DIRACK

HOW DIRAC WORKS CURRENTLY

$ dirac-proxy-info

Ident'ity based subject : /DC=ch/DC=cern/0U=0rganic Units/0U=U
issuer : /DC=ch/DC=cern/0U=0xrganic Units/0U=U
. identity : /DC=ch/DC=cern/0U=0rganic Units/0U=U
User shows up with a proxy cert s . n sk
. . DIRAC group : diracAdmin
Contains: DN + Group path . /tmp/x509up_ul1000

DN > CS > User ID iy ohasn
[Ij DN = /DC=ch/DC=cern/OU=0rganic Units/OU=Users/CN=chaen/CN=705305/CN=Christophe Haen

B CA =/DC=ch/DC=cern/CN=CERN Grid Certification Authority

Group > CS > Properties
-3 Groups
-5 diracAdmin
D Users = atsareg, chaen, fstagni, joel, roma

D Properties = Operator, FullDelegation, ProxyManagement, ServiceAdministrator, JobAdministrator, CSAdm

HOW DIRAC WORKS CURRENTLY: PROPERTIES

String identifier. Matched to RPC calls (ish)

A @Server class SecurityProperty(str, Enum):

propert
pr

[E] HandlerPath = DIRAC/ConfigurationSystem/Service/ConfigurationHandler.py o £ v

[Port = 9135 TRUSTED_HOST = "TrustedHost"

#: Normal
B MaxThreads = 20 NORMAL USER = "NormalUser"
[UpdatePilotCStoJSONFile = True #: CS Administrator - possibility to
D SocketBachog 2048 CS_ADMINISTRATOR = "CSAdministrator"
[™ DisableMonitoring = yes
[Y MaxWaitingPetitions = 100

haring among nber

JOB_SHARING = "JobSharing"
#: DIRAC V1 Administrator
SERVICE ADMINISTRATOR = "ServiceAdministrator"

—- &3 Authorization #: Job Administrator can manipulate everybod

. JOB_ADMINISTRATOR = "JobAdministrator"
[Default = authenticated SRR .

o lon < jet] monitoring intormat
[™ commitNewData = CSAdministrator JOB_MONITOR = "JobMonitor"
[B rollbackToVersion = CSAdministrator

[getVersionContents = ServiceAdministrator, CSAdministrator

[} forceGlobalConfigurationUpdate = CSAdministrator 3

WHAT DOES TOKEN AUTH LOOK LIKE!

$ curl -H "Authorization: Bearer ${myAccessToken}" $DIRACX_URL/api/auth/userinfo
{

e Everything is inside the token » no need to do lookups
e Access and identity are considered separate matters

DIRACK TOKEN CONTENTS

No longer use the group for assuming the properties

(but it can provide a default set during issuance)

Identity

Yaud™: “‘dirac’,

"iss": "http://lhcbdirac.cern.ch/",

"iti": "54cab6ca-1bbe-46b0-b63b-5c33cc7f2a89",
*vo': “lhch",

Ysub': “"thcb:cburr”,

"preferred_username": "cburr",

"dirac_group": "lhcb_user",
"exp'": 1685192063,
"dirac_properties": |
"NormalUser",
"PrivateLimitedDelegation" Authorisation

$ dirac whoami

WHAT DO WE KEEP THE SAME! (

"sub": "gridpp:dfl@1c3f-0285-5¢

twe®: *qridpp”,
e The properties themselves (for now) [EECESETSeheIV[oRIIc)S Keleo LIS S
"properties": [
e We still need group/identity "NormalUsexr"

(quotas, etc)],

"preferred_username": "chaen"
e Users only interact with groups }

(groups are an alias to a set of properties)

$ dirac login gridpp --group gridpp_user
Logging in with scopes: ['vo griwppiss=sgroup:gridpp_user']
Now go to: https://diracx-cert.app.cern.ch/api/auth/device

Saved credentials to /home/chaen/.cache/diracx/creden

Login successfull!

WHAT DO WE WANT T0 CHANGE

e Multi VO

o Info in the token

o As a design principle
e Separate properties

o Allow to request specific properties (task)
o Many use cases: CI, external tools, etc

https://github.com/DIRACGrid/diracx/issues/148

POLICIES

e DIRAC has a quite flexible system for WMS: JobPolicy

e Allows to define authorization rules for the various
job operations based on group membership

e Make something more generic which can be applied to

other systems (Transformation, CS, DFC).
o e.g. expose only part of the namespace

ADMIN VO VS VO ADMIN

e VO Admin:

o Can do everything within a given VO

e A special Admin pseudo-VO:
o can see the state of everything
o can’t do some actions (e.g. submit job)
o can do others (e.g. kill job)

HOW DO WE GET A TOKEN?

Standard ways:

e Web: Redirect to IdP
e CLI: “Device flow” (like you saw from Chris)
e Others: Extension could support others (e.g. kerberos)

For compatibility we can also:

e use a proxy to get a token
e use a token to get a proxy

10

PILOTS

e OAuth was designed for TECH_COMPANY_1 to talk to
OTHER_BIG_TECH_COMPANY as MEATBAG_123456789

e We have a lot more VOs (and a lot fewer users)

e Pilots are special, tech companies don’t really send
something into the wild

e Need to do something custom &

11

THE THREE PILOT CREDENTIALS

e Credential A:

o Is submitted together with the pilot
o Long lived, very limited scope

e Credential B:

O Is g'iven in exchange of Credential A (could: limit IPs, single use, ..)
o Pilot lifetime, can only request N jobs + report pilot info

e Credential C:

o Retrieved with Credential B
o Job lifetime, permissions depend on the job 1itself

12

THE IMPERSONATOR

e DIRAC servers need to talk to DiracX as MEATBAG_123456789

o Return a token for a proxy
o Sandbox management
o etc

® TheImpersonator allows just that :-)
o Based on shared secrets

with TheImpersonator(credDict) as client:

res = client.jobs.initiate sandbox upload(sandbox info)

13

CONCLUSION

e We intend to make it the transition from X509 1n
DIRAC to Token 1n DiracX

o Transparent to users
o More flexible for experts
o But mostly: transparent to Daniela

e Security model 1is available for review 1n

o Has already been reviewed by an expert
o See:

DIRACGrid/diracx#136

14

https://github.com/DIRACGrid/diracx/pull/136

QUESTIONS!

