Bell inequalities and quantum entanglement in weak gauge boson production at the LHC and future colliders

Emidio Gabrielli

University of Trieste, Italy NICPB, Tallinn, Estonia

LHCEWWG-MB: Polarization session

March 8th, 2023
in collaboration with: Marco Fabbrichesi, Roberto Floreanini, and Luca Marzola
based on: arXiv: 2302.00683 [hep-ph]

Introduction

- "Quantum Entanglement" between two systems is a pure quantum phenomena
- it violates Bell's inequalities (set of correlation measurements)
J.S. Bell, "On the EPR Paradox", Phys 1 (1964) 195
incompatible with any prediction based on classical physics or local realism (EPR, hidden variables theories)
- to test these inequalities, pairs of two outcome measurements is required
- Experimental tests of Bell's inequalities violation M. Horodecki, K. Horodecki Rev. Mod. Phys 81 (2009) quant-ph/0702225
pair of photons Freedman-Clauser, PRL 28 (1972); Aspect-Dalibard-Roger, PRL 49 (1982)
- ions M.A. Rowe et. AI , Nature 409 (2001)
- superconductive systems M. Ansmann et al. , Nature 461 (2009)
- nitrogen vacancy centers W. Pfaff et al. , Nature Physics 9 (2013)
pairs of three-outcome measurements with photons A.Vaziri et al , PRL 89 (2002)
- High energy collisions can give rise to quantum entanglement !

bipartite systems \rightarrow two entangled particles

discreet degrees of freedoms in each system

 fundamental fermions: spin $1 / 2$ massless spin 1 (photon):
$2 \square$ quibit

massive spin $1(\mathrm{~W}, \mathrm{Z})$
$3 \square$ qutrit

Probing entanglement at colliders

Polarization mainly studied for heavy fermions, the decays of which act as their own polarimeters

$$
e^{+} e^{-} \rightarrow \Lambda \bar{\Lambda} \rightarrow \pi^{-} p \pi^{+} \bar{p}
$$

\Rightarrow Neutral K meson systems
$\#$ Positronium
\Rightarrow Charmonium decays $\rightarrow \Lambda \bar{\Lambda}$
Neutrino oscillations
(previous works on Bell's inequalities at high energy)

Benatti, Floreanini, EPJC 13 (2000)
BertImann, Grimus, Hiesmayr, PLA 289 (2001)
Acin, Latorre, Pascual, PRA 63 (2001); Li-Qiao, PLA 373 (2009)
Baranov, J. Phys. G 35 (2008); Chen et al PTEP 2013, 1302.6438 [hep-ph];
Qian et al. PRD 101 (2020) 2002.04283 [quant-ph]
Banerjee et al, EPJC 75 (2015) 1508.03480 [hep-ph]

Probing entanglement at LHC and future colliders

(recent activity \rightarrow starting from 2021)

top-quark pair production

SM \rightarrow
New Physics \rightarrow

tau-pair production (Drell-Yan)
Λ-hyperons
\rightarrow Higgs boson \rightarrow tau pair, two photons

```
w weak gauge-boson pairs
```

HWW, ZZ, WZ (Drell-Yan)

- Afik, de Nova, Euro Phys. J Plus 136 (2021) 2003.02280 [quant-ph] Fabbrichesi, Floreanini, Panizzo, PRL 127 (2021), 2102.11883 [hep-ph] Severi, Boschi, Maltoni, Sioli, EPJC 82 (2022), 2110.10112 [hep-ph] Afik, de Nova, Quantum 6 (2022), 2203.05582 [quant-ph]] Aguilar-Saavedra, Casas, EPJC 82 (2022), 2205.00542 [hep-ph]
- Fabbrichesi, EG, Floreanini, EPJC 83 (2023), 2302.00683 [hep-ph] Aoude, Madge, Maltoni, Mantani, PRD 106 (2022), 2203.05619 [hep-ph] Severi, Vryonidou, JHEP 01 (2023), 2210.09339 [hep-ph]
- Fabbrichesi, EG, Floreanini, EPJC 83 (2023), 2302.00683 [hep-ph]

Gong, Parida, Tu, Venugopalan, 2107.13007 [hep-ph]

Fabbrichesi, Gabrielli, Floreanini, EPJC 83 (2023), 2208.11723 [hep-ph] Altakach, Lambda, Maltoni, Mawatari, Sakurai, 2211.10513 [hep-ph]

- Alan Barr, PLB 285 (2022), 2106.01377 [hep-ph]

Barr, Caban, Rembielinski, 2204.11063 [hep-ph]
Aguilar-Saavedra, Bernal, Casas, Moreno, 2209.13441 [hep-ph]
Aguilar-Saavedra, 2209.14033 [hep-ph]
Fabbrichesi, Floreanini. EG, Marzola, 2302.00683 [hep-ph]

- Ashby-Pickering, Barr, Wierzchucka, 2209.13990 [quant-ph]

Fabbrichesi, Floreanini. EG, Marzola, 2302.00683 [hep-ph]

Quantum tomography of two Vector Boson production

- Requires the knowledge of the polarization density matrix for two vector bosons (WW, ZZ, WZ)
- it can be fully reconstructed from the angular distributions of the VB decay products
- so far experimental analysis have been focused on the density matrix of two spin $1 / 2$ particles
- for instance for top-quark pairs (not exactly the same as analyzing spin-correlations)
- no experimental studies so far at LHC for the density matrix of two Vector Boson production
- knowledge of the full polarization density matrix allows to study many interesting phenomena
- Quantum Entanglement
- Violation of Bell's inequalities
- Sensitivity to New Physics

Density matrix of one spin=1 particle V_{1}

(covariant formalism)

$$
\text { right-handed basis } \longrightarrow\{\hat{\mathbf{n}}, \hat{\mathbf{r}}, \hat{\mathbf{k}}\} \quad \hat{\mathbf{n}}=\hat{\mathbf{r}} \times \hat{\mathbf{k}}
$$

Spin-1 eigenstates
 \bigcirc on rest frame $\psi_{ \pm}=-\frac{1}{\sqrt{2}}(\pm \hat{\mathbf{n}}+i \hat{\mathbf{r}}) \quad \psi_{0}=\hat{\mathbf{k}}$ corresponding to eigenvalues $\lambda= \pm 1,0$

decay plane of V_{1} at rest
direction of spin-axis
quantization

- In a more general frame

$$
p^{\mu}=E(1, \hat{\mathbf{k}} \beta)
$$

- particle energy

$$
\text { boosted }(n, r, k) \text { basis } \rightarrow\left(n_{1}^{\mu}, n_{2}^{\mu}, n_{3}^{\mu}\right)
$$

$$
\{\hat{\mathbf{n}}, \hat{\mathbf{r}}, \hat{\mathbf{k}}\} \Rightarrow n_{1}^{\mu}=(0, \hat{\mathbf{n}}), n_{2}^{\mu}=(0, \hat{\mathbf{r}}), n_{3}^{\mu}=\frac{E}{M}(\beta, \hat{\mathbf{k}})
$$

$$
n_{0}^{\mu}=E / M(1, \hat{\mathbf{k}} \beta) \triangleleft g_{\mu \nu} n_{m}^{\mu} n_{n}^{\nu}=-\delta_{m n}
$$

$$
\{n, m\}=0,1,2,3
$$

orthogonal to the particle 4-momentum

$$
n_{m}^{\mu} p_{\mu}=0
$$

covariant polarization vector of spin-1
$\varepsilon^{\mu}(p, \lambda)=-\frac{1}{\sqrt{2}}|\lambda|\left(\lambda n_{1}^{\mu}+i n_{2}^{\mu}\right)+(1-|\lambda|) n_{3}^{\mu} \begin{aligned} & \text { helicity } \\ & \lambda= \pm 1,0\end{aligned}$

Covariant Projector

$$
\begin{gathered}
\mathscr{P}_{\lambda \lambda^{\prime}}^{\mu \nu}(p)=\varepsilon^{\mu}(p, \lambda)^{\star} \varepsilon^{\nu}\left(p, \lambda^{\prime}\right) \quad \text { master formula } \\
=\frac{1}{3}\left(-g^{\mu \nu}+\frac{p^{\mu} p^{\nu}}{M^{2}}\right) \delta_{\lambda \lambda^{\prime}}-\frac{i}{2 M} \epsilon^{\mu \nu \alpha \beta} p_{\alpha} n_{\beta}^{i}\left(S_{i}\right)_{\lambda \lambda^{\prime}}-\frac{1}{2} n_{i}^{\mu} n_{j}^{\nu}\left(S_{i j}\right)_{\lambda \lambda^{\prime}} \\
S_{i j}=S_{i} S_{j}+S_{j} S_{i}-\frac{4}{3} \mathbb{1} \delta_{i j} \quad \varepsilon^{0123}=1 \quad \begin{array}{c}
\text { H.S. Song, Lett. Nuovo Cim. 25 (1979) } \\
\text { S.Y. Choi, T. Lee, H.S. Song, PRD 40 (1989) } \\
\text { Fabbrichesi, Floreanini, EG, Marzola, } \\
\text { 2302.00683 [hep-ph] }
\end{array}
\end{gathered}
$$

$S_{i}, i \in\{1,2,3\} \quad$ rotation matrices for spin-1 particle (see backup slides) basis correspondence $\quad|+\rangle=\left(\begin{array}{l}1 \\ 0 \\ 0\end{array}\right), \quad|0\rangle=\left(\begin{array}{l}0 \\ 1 \\ 0\end{array}\right), \quad|-\rangle=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right) \begin{gathered}\text { corresponding to eigenevalues } \\ \lambda= \pm 1,0\end{gathered}$
for $\left(S_{i}\right)_{\lambda \lambda^{\prime}}$

Matrix element for a spin-1 emission

$$
\mathcal{M}(\lambda)=\mathcal{M}_{\mu} \varepsilon^{\mu \star}(p, \lambda)
$$

$$
\mathscr{P}_{\lambda \lambda^{\prime}}^{\mu \nu}(p)=\varepsilon^{\mu}(p, \lambda)^{\star} \varepsilon^{\nu}\left(p, \lambda^{\prime}\right)
$$

Density matrix

$$
\rho\left(\lambda, \lambda^{\prime}\right)=\frac{\mathcal{M}(\lambda) \mathcal{M}^{\dagger}\left(\lambda^{\prime}\right)}{|\overline{\mathcal{M}}|^{2}}=\frac{\mathcal{M}_{\mu} \mathcal{M}_{\nu}^{\dagger} \mathscr{P}_{\lambda \lambda^{\prime}}^{\mu \nu}(p)}{|\overline{\mathcal{M}}|^{2}}
$$

unpolarized square amplitude
Useful to project density matrix on the Gell-Mann basis

$$
\rho\left(\lambda, \lambda^{\prime}\right)=\left(\frac{1}{3} \mathbb{1}+\sum_{a=1}^{8} v^{a} T^{a}\right)_{\lambda \lambda^{\prime}}
$$

$T^{a} \quad 3 \times 3$ Gell-Mann matrices

$$
v^{a}=\frac{1}{2} \operatorname{Tr}\left[\rho T^{a}\right]
$$

Density matrix of two spin=1 particles $V_{1} V_{2}$

$$
\bar{q}\left(p_{1}\right) q\left(p_{2}\right) \rightarrow V_{1}\left(k_{1}, \lambda_{1}\right) V_{2}\left(k_{2}, \lambda_{2}\right)
$$

in the center of mass frame

$$
\hat{\mathbf{r}}=\frac{1}{\sin \Theta}(\hat{\mathbf{p}}-\cos \Theta \hat{\mathbf{k}}), \quad \hat{\mathbf{n}}=\frac{1}{\sin \Theta}(\hat{\mathbf{p}} \times \hat{\mathbf{k}})
$$

$p_{1}^{\mu}=E(1, \hat{\mathbf{p}}), p_{2}^{\mu}=E(1,-\hat{\mathbf{p}}), \quad k_{1}^{\mu}=E(1, \beta \hat{\mathbf{k}}), \quad k_{2}^{\mu}=E(1,-\beta \hat{\mathbf{k}})$
$n_{1}^{\mu}(1)=n_{1}^{\mu}(2)=(0, \hat{\mathbf{n}}), n_{2}^{\mu}(1)=n_{2}^{\mu}(2)=(0, \hat{\mathbf{r}})$
$n_{3}^{\mu}(1)=\gamma(\beta, \hat{\mathbf{k}}), \quad n_{3}^{\mu}(2)=\gamma(-\beta, \hat{\mathbf{k}})$,

Matrix element of two-Vector Boson production

$$
\bar{q}\left(p_{1}\right) q\left(p_{2}\right) \rightarrow V_{1}\left(k_{1}, \lambda_{1}\right) V_{2}\left(k_{2}, \lambda_{2}\right)
$$

$$
\mathcal{M}\left(\lambda_{1}, \lambda_{2}\right)=\mathcal{M}_{\mu \nu} \varepsilon^{\mu \star}\left(k_{1}, \lambda_{1}\right) \varepsilon^{\nu \star}\left(k_{2}, \lambda_{2}\right)
$$

Density matrix

9×9 matrix
unpolarized matrix element square
ρ depends on scalar products of $n_{m}^{\mu}(1), n_{m}^{\mu}(2)$
with the momenta of the reaction with $m=1,2,3$

$$
\mathscr{P}_{\lambda \lambda^{\prime}}^{\mu \nu}(p)=\varepsilon^{\mu}(p, \lambda)^{\star} \varepsilon^{\nu}\left(p, \lambda^{\prime}\right)
$$

Density matrix fortwo = QUTR\|TS

useful to decompose the density matrix on the basis of tensor products of Gell-Mann matrices
$\left\{\mathbb{1} \otimes \mathbb{1}, \mathbb{1} \otimes T^{a}, T^{a} \otimes \mathbb{1}, T^{a} \otimes T^{b}\right\} \quad T^{a} \quad 3 \times 3$ Gell-Mann matrices
given by the Kronecker product of the matrix representations $[A \otimes B]_{i i^{\prime} j j^{\prime}}=A_{i i^{\prime}} B_{j j^{\prime}}$

$$
\rho\left(\lambda_{1}, \lambda_{1}^{\prime}, \lambda_{2}, \lambda_{2}^{\prime}\right)=\left(\frac{1}{9}[\mathbb{1} \otimes \mathbb{1}]+\sum_{a} f_{a}\left[\mathbb{1} \otimes T^{a}\right]+\sum_{a} g_{a}\left[T^{a} \otimes \mathbb{1}\right]+\sum_{a b} h_{a b}\left[T^{a} \otimes T^{b}\right]\right)_{\lambda_{1} \lambda_{1}^{\prime}, \lambda_{2} \lambda_{2}^{\prime}}
$$

${ }^{7} \times 9$ matrix

$$
f_{a}=\frac{1}{6} \operatorname{Tr}\left[\rho\left(\mathbb{1} \otimes T^{a}\right)\right], \quad f_{b}=\frac{1}{6} \operatorname{Tr}\left[\rho\left(T^{a} \otimes \mathbb{1}\right)\right], \quad h_{a b}=\frac{1}{4} \operatorname{Tr}\left[\rho\left(T^{a} \otimes T^{b}\right)\right]
$$

- these are scalar quantities that depend on $V V^{\prime}$ 'invariant mass and scattering angle Θ in c.m. frame
e we can also extract them from data, using the decay products of final VB (see next slides)

Reconstructing the correlation coefficients from the data

Ashby-Pickering, Barr, Wierzchucka, 2209.13990 [quant-ph]

$$
p p \rightarrow V_{1}+V_{2}+X \rightarrow \ell^{+} \ell^{-}+j \mathrm{jets}+{\underset{T}{T}}_{E_{T}}^{\substack{\text { missing energy due to the } \\ \\ \text { presence of neutrinos }}}
$$

- These process include also the production of VB via the resonant Higgs boson channel as well as via quark-fusion (Drell-Yan)
- The momenta of the final leptons provide a measurement of the VB polarizations
- These momenta are the only information we need to extract from the numerical simulation or from the data to reconstruct the polarization density matrix

$$
\text { W W } \quad p p \rightarrow V_{1}+V_{2}+X \rightarrow \ell^{+} \ell^{-}+\text {jets }+E_{T}^{\text {miss }}
$$

Differential cross section

$$
\frac{1}{\sigma} \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega^{+} \mathrm{d} \Omega^{-}}=\left(\frac{3}{4 \pi}\right)^{2} \operatorname{Tr}\left[\rho_{V_{1} V_{2}}\left(\Gamma_{+} \otimes \Gamma_{-}\right)\right]
$$

depend on the invariant mass $m_{V V}$ (or velocity β) and scattering angle Θ in the $\mathrm{V}_{1} \mathrm{~V}_{2} \mathrm{~cm}$ frame

Rahaman, Singh, NPB 984 (2022), 2109.09345 [hep-ph]

$\rho_{V_{1} V_{2}}=$ density matrix of $\mathrm{V}_{1} \mathrm{~V}_{2}$
$\Gamma \pm$ Density matrices that describe the polarization of the two decaying W into final leptons (the charged ones assumed to be massless)
these are projectors in the case of the W-bosons because of their chiral couplings to leptons
can be computed by rotating to an arbitrary polar axis the spin ± 1 states of gauge bosons taken in the z-direction

$$
\Gamma_{ \pm}=\frac{1}{3} \mathbb{1}+\sum_{i=1}^{8} \mathfrak{q}_{ \pm}^{a} T^{a} \longrightarrow \text { Density matrices for W-bosons }
$$

the functions $\mathfrak{q}_{ \pm}^{a}$ can be written in terms of the respective spherical coordinates

$$
\begin{aligned}
h_{a b} & =\frac{1}{\sigma} \iint \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega^{+} \mathrm{d} \Omega^{-}} \mathfrak{p}_{+}^{a} \mathfrak{p}_{-}^{b} \mathrm{~d} \Omega^{+} \mathrm{d} \Omega^{-} \\
f_{a} & =\frac{1}{\sigma} \int \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega^{+}} \mathfrak{p}_{+}^{a} \mathrm{~d} \Omega^{+} \\
g_{a} & =\frac{1}{\sigma} \int \frac{\mathrm{~d} \sigma}{\mathrm{~d} \Omega^{-}} \mathfrak{p}_{-}^{a} \mathrm{~d} \Omega^{-}
\end{aligned}
$$

$\mathfrak{p}_{ \pm}^{n}$ a particular set of orthogonal functions $\square\left(\frac{3}{4 \pi}\right) \int \mathfrak{p}_{ \pm}^{n} \mathfrak{q}_{ \pm}^{m} \mathrm{~d} \Omega^{ \pm}=\delta^{n m}$

For the ZZ production the density matrices $\Gamma_{ \pm}$are not projector due to the Z boson coupling

$$
\mathcal{L} \supset-i \frac{g}{\cos \theta_{W}}\left[g_{L}\left(1-\gamma^{5}\right) \gamma_{\mu}+g_{R}\left(1+\gamma^{5}\right) \gamma_{\mu}\right] Z^{\mu}
$$

$$
\tilde{\mathfrak{q}}^{n}=\frac{1}{g_{R}^{2}+g_{L}^{2}}\left[g_{R}^{2} \mathfrak{q}_{+}^{n}+g_{L}^{2} \mathfrak{q}_{-}^{n}\right]
$$

$$
\tilde{\mathfrak{p}}^{n}=\sum_{m} \mathfrak{a}_{m}^{n} \mathfrak{p}_{+}^{m}
$$

$$
\mathfrak{a}_{m}^{n}=\frac{1}{g_{L}^{2}-g_{R}^{2}}\left(\begin{array}{cccccccc}
g_{R}^{2} & 0 & 0 & 0 & 0 & g_{L}^{2} & 0 & 0 \\
0 & g_{R}^{2} & 0 & 0 & 0 & 0 & g_{L}^{2} & 0 \\
0 & 0 & g_{R}^{2}-\frac{1}{2} g_{L}^{2} & 0 & 0 & 0 & 0 & \frac{\sqrt{3}}{2} g_{L}^{2} \\
0 & 0 & 0 & g_{R}^{2}-g_{L}^{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & g_{R}^{2}-g_{L}^{2} & 0 & 0 & 0 \\
g_{L}^{2} & 0 & 0 & 0 & 0 & g_{R}^{2} & 0 & 0 \\
0 & g_{L}^{2} & 0 & 0 & 0 & 0 & g_{R}^{2} & 0 \\
0 & 0 & \frac{\sqrt{3}}{2} g_{L}^{2} & 0 & 0 & 0 & 0 & \frac{1}{2} g_{L}^{2}-g_{R}^{2}
\end{array}\right) .
$$

Wigner's Q symbols

$$
\begin{aligned}
\mathfrak{q}_{ \pm}^{1} & =\frac{1}{\sqrt{2}} \sin \theta^{ \pm}\left(\cos \theta^{ \pm} \pm 1\right) \cos \phi^{ \pm} \\
\mathfrak{q}_{ \pm}^{2} & =\frac{1}{\sqrt{2}} \sin \theta^{ \pm}\left(\cos \theta^{ \pm} \pm 1\right) \sin \phi^{ \pm} \\
\mathfrak{q}_{ \pm}^{3} & =\frac{1}{8}\left(1 \pm 4 \cos \theta^{ \pm}+3 \cos 2 \theta^{ \pm}\right) \\
\mathfrak{q}_{ \pm}^{4} & =\frac{1}{2} \sin ^{2} \theta^{ \pm} \cos 2 \phi^{ \pm} \\
\mathfrak{q}_{ \pm}^{5} & =\frac{1}{2} \sin ^{2} \theta^{ \pm} \sin 2 \phi^{ \pm} \\
\mathfrak{q}_{ \pm}^{6} & =\frac{1}{\sqrt{2}} \sin \theta^{ \pm}\left(-\cos \theta^{ \pm} \pm 1\right) \cos \phi^{ \pm} \\
\mathfrak{q}_{ \pm}^{7} & =\frac{1}{\sqrt{2}} \sin \theta^{ \pm}\left(-\cos \theta^{ \pm} \pm 1\right) \sin \phi^{ \pm} \\
\mathfrak{q}_{ \pm}^{8} & =\frac{1}{8 \sqrt{3}}\left(-1 \pm 12 \cos \theta^{ \pm}-3 \cos 2 \theta^{ \pm}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathfrak{p}_{ \pm}^{1}=\sqrt{2} \sin \theta^{ \pm}\left(5 \cos \theta^{ \pm} \pm 1\right) \cos \phi^{ \pm} \\
& \mathfrak{p}_{ \pm}^{2}=\sqrt{2} \sin \theta^{ \pm}\left(5 \cos \theta^{ \pm} \pm 1\right) \sin \phi^{ \pm} \\
& \mathfrak{p}_{ \pm}^{3}=\frac{1}{4}\left(5 \pm 4 \cos \theta^{ \pm}+15 \cos 2 \theta^{ \pm}\right) \\
& \mathfrak{p}_{ \pm}^{4}=5 \sin ^{2} \theta^{ \pm} \cos 2 \phi^{ \pm} \\
& \mathfrak{p}_{ \pm}^{5}=5 \sin ^{2} \theta^{ \pm} \sin 2 \phi^{ \pm} \\
& \mathfrak{p}_{ \pm}^{6}=\sqrt{2} \sin \theta^{ \pm}\left(-5 \cos \theta^{ \pm} \pm 1\right) \cos \phi^{ \pm} \\
& \mathfrak{p}_{ \pm}^{7}=\sqrt{2} \sin \theta^{ \pm}\left(-5 \cos \theta^{ \pm} \pm 1\right) \sin \phi^{ \pm} \\
& \mathfrak{p}_{ \pm}^{8}=\frac{1}{4 \sqrt{3}}\left(-5 \pm 12 \cos \theta^{ \pm}-15 \cos 2 \theta^{ \pm}\right) .
\end{aligned}
$$

Di=boson production in Higgs boson decays

$$
H \rightarrow V\left(k_{1}, \lambda_{1}\right) V^{*}\left(k_{2}, \lambda_{2}\right)
$$

In the Higgs boson rest frame the density matrix of the bipartite $\mathrm{V} \mathrm{V}^{*}$ system does not depend on the scattering angle, but only by the Higgs mass, the V mass and the off-shell V^{*} mass

Di-boson production in Higgs boson decays

A. Barr, PLB 825 (2022), 2106.01377 [hep-ph]

Aguilar-Saavedra et al, 2209.1344` [hep-ph]

$$
H \rightarrow V\left(k_{1}, \lambda_{1}\right) V^{*}\left(k_{2}, \lambda_{2}\right)
$$

Results based on

arXiv: 2302.00683 [hep-ph]

$$
\left\{\begin{array}{l}
\xi_{W}=1, \text { and } \xi_{Z}=1 /\left(2 c_{W}\right. \\
g \text { is the weak coupling }
\end{array}\right.
$$

V^{*} regarded as an off-shell vector boson with mass $M_{V}^{*}=f M_{V} \quad 0<f<1$ mass of \vee boson M_{V}

Quantum Amplitude

$$
\mathcal{M}_{H}\left(\lambda_{1}, \lambda_{2}\right)=g M_{V} \xi_{V} g_{\mu \nu} \varepsilon^{\mu \star}\left(k_{1}, \lambda_{1}\right) \varepsilon^{\nu \star}\left(k_{2}, \lambda_{2}\right)
$$

$$
\mathcal{M}_{H}\left(\lambda_{1}, \lambda_{2}\right) \mathcal{M}_{H}\left(\lambda_{1}^{\prime}, \lambda_{2}^{\prime}\right)^{\dagger}=g^{2} M_{V}^{2} \xi_{V}^{2} g_{\mu \nu} g_{\mu^{\prime} \nu^{\prime}} \mathscr{P}_{\lambda_{1} \lambda_{1}^{\prime}}^{\mu \mu_{1}^{\prime}}\left(k_{1}\right) \mathscr{P}_{\lambda_{2} \lambda_{2}}^{\nu \nu^{\prime}}\left(k_{2}\right)
$$

Unpolarized square amplitude

$$
\left|\overline{\mathcal{M}}_{H}\right|^{2}=\frac{g^{2} \xi_{V}^{2}}{4 f^{2} M_{V}^{2}}\left[m_{H}^{4}-2\left(1+f^{2}\right) m_{H}^{2} M_{V}^{2}+\left(1+10 f^{2}+f^{4}\right) M_{V}^{4}\right]
$$

The non-vanishing f,g and h elements

$$
g_{a}=f_{a} \text { for } a \in\{1, \ldots, 8\}
$$

$$
\begin{aligned}
f_{3} & =\frac{1}{6} \frac{-m_{H}^{4}+2\left(1+f^{2}\right) m_{H}^{2} M_{V}^{2}+\left(1-f^{2}\right)^{2} M_{V}^{4}}{m_{H}^{4}-2\left(1+f^{2}\right) m_{H}^{2} M_{V}^{2}+\left(1+10 f^{2}+f^{4}\right) M_{V}^{4}} \\
f_{8} & =-\frac{1}{\sqrt{3}} f_{3}
\end{aligned}
$$

$$
h_{16}=h_{61}=h_{27}=h_{72}=\frac{f M_{V}^{2}\left(-m_{H}^{2}+\left(1+f^{2}\right) M_{V}^{2}\right)}{m_{H}^{4}-2\left(1+f^{2}\right) m_{H}^{2} M_{V}^{2}+\left(1+10 f^{2}+f^{4}\right) M_{V}^{4}}
$$

$$
h_{33}=\frac{1}{4} \frac{\left(m_{H}^{2}-\left(1+f^{2}\right) M_{V}^{2}\right)^{2}}{m_{H}^{4}-2\left(1+f^{2}\right) m_{H}^{2} M_{V}^{2}+\left(1+10 f^{2}+f^{4}\right) M_{V}^{4}}
$$

$$
h_{38}=h_{83}=-\frac{1}{4 \sqrt{3}}
$$

$$
h_{44}=h_{55}=\frac{2 f^{2} M_{V}^{4}}{m_{H}^{4}-2\left(1+f^{2}\right) m_{H}^{2} M_{V}^{2}+\left(1+10 f^{2}+f^{4}\right) M_{V}^{4}}
$$

$$
h_{88}=\frac{1}{12} \frac{m_{H}^{4}-2\left(1+f^{2}\right) m_{H}^{2} M_{V}^{2}+\left(1-14 f^{2}+f^{4}\right) M_{V}^{4}}{m_{H}^{4}-2\left(1+f^{2}\right) m_{H}^{2} M_{V}^{2}+\left(1+10 f^{2}+f^{4}\right) M_{V}^{4}}
$$

Inserting the f, g and h into the Gell-Mann basis decomposition

$$
\rho_{H}=2\left(\begin{array}{ccccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & h_{44} & 0 & h_{16} & 0 & h_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & h_{16} & 0 & 2 h_{33} & 0 & h_{16} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & h_{44} & 0 & h_{16} & 0 & h_{44} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right),
$$

$$
\operatorname{Tr}\left[\rho_{H}\right]=1
$$

density matrix is idempotent

$$
\rho_{H}^{2}=\rho_{H}
$$

Signaling that $\mathrm{H} \rightarrow \mathrm{VV}^{*}$ is a pure state

$$
\rho_{H}=\left|\Psi_{H}\right\rangle\left\langle\Psi_{H}\right|
$$

using the basis

Aguilar-Saavedra et al, 2209.1344` [hep-ph]

$$
\left|\lambda \lambda^{\prime}\right\rangle=|\lambda\rangle \otimes\left|\lambda^{\prime}\right\rangle \text { with } \lambda, \lambda^{\prime} \in\{+, 0,-\}
$$

$$
\left|\Psi_{H}\right\rangle=\frac{1}{\sqrt{2+\varkappa^{2}}}[|+-\rangle-\varkappa|00\rangle+|-+\rangle] \quad \quad \varkappa=1+\frac{m_{H}^{2}-(1+f)^{2} M_{V}^{2}}{2 f M_{V}^{2}}
$$

Bell's inequallities

- consider the following correlator \mathcal{I}_{3} for probability measurements

Collins, Gisin, Linden,
Massar, Popescu, PRL 88 (2002)

$$
\mathcal{I}_{3}=\operatorname{Tr}[\rho \mathcal{B}]
$$

Generalized Bell's inequalities for two-qutrits

For deterministic local models

$$
\mathcal{I}_{3} \leq 2
$$

QM qutrits can violate this inequality with upper bound $=4$

- For the case of maximally entangled state $\rho=\left|\Psi_{+}\right\rangle\left\langle\Psi_{+}\right|$optimal choice of measurements has been found \rightarrow giving a specific form of \mathcal{B}
- still freedom to modify measured observables through unitary transformations U, V on \mathcal{B}

$$
\mathcal{B} \rightarrow(U \otimes V)^{\dagger} \cdot \mathcal{B} \cdot(U \otimes V)
$$

U,V unitary 3×3 matrices depending on the kinematic of the process
in order to maximize the violation of CGLMP Bell's inequality for two-qutrits

- Notice that, maximal violation of Bell's inequality obtained with \mathcal{B} is for a density matrix which is NOT maximally entangled

Quantifying entanglement

- Concurrence $\mathcal{C}[\rho]$ vanishes for separable states (see backup slides for definition)

For qutrits

Onalytical solution exists only for the lower bound

$$
(\mathcal{C}[\rho])^{2} \geq \mathscr{C}_{2}[\rho]
$$

Mintert, Buchleitner, PRL 98 (2007)

$$
\mathscr{C}_{2}[\rho]=2 \max \left(0, \operatorname{Tr}\left[\rho^{2}\right]-\operatorname{Tr}\left[\left(\rho_{A}\right)^{2}\right], \operatorname{Tr}\left[\rho^{2}\right]-\operatorname{Tr}\left[\left(\rho_{B}\right)^{2}\right]\right)
$$

- If non-vanishing unequivocally signal the presence of entanglement (witness of entanglement) \rightarrow used in our analysis of entanglement for WW, ZZ and WZ productions
- Solution for upper bound

$$
(\mathcal{C}[\rho])^{2} \leq 2 \min \left(1-\operatorname{Tr}\left[\left(\rho_{A}\right)^{2}\right], 1-\operatorname{Tr}\left[\left(\rho_{B}\right)^{2}\right]\right)
$$

- maximum value of Concurrence can be obtained for the maximum symmetric state

$$
\text { for two-qutrits } \longrightarrow \mathcal{C}\left[\left|\Psi_{+}\right\rangle\right]=2 / \sqrt{3} \quad \text { corresponding to the state } \quad\left|\Psi_{+}\right\rangle=\frac{1}{\sqrt{3}} \sum_{i=1}^{3}|i\rangle \otimes|i\rangle
$$

- On the Gell-Mann basis, lower bound of Concurrence can be easily computed

$$
\begin{aligned}
\mathscr{C}_{2}= & 2 \max \left[-\frac{2}{9}-12 \sum_{a} f_{a}^{2}+6 \sum_{a} g_{a}^{2}+4 \sum_{a b} h_{a b}^{2}\right. \\
& \left.-\frac{2}{9}-12 \sum_{a} g_{a}^{2}+6 \sum_{a} f_{a}^{2}+4 \sum_{a b} h_{a b}^{2}\right]
\end{aligned}
$$

- If the bipartite (A, B) system is a pure state
(as in the $\mathrm{H} \rightarrow \mathrm{VV}$ case)
it is possible to quantify its entanglement by computing

Entropy of entanglement

$$
\mathscr{E}[\rho]=-\operatorname{Tr}\left[\rho_{A} \log \rho_{A}\right]=-\operatorname{Tr}\left[\rho_{B} \log \rho_{B}\right]
$$

O in terms of the von Neumann entropy of either the two component subsystems A and B with corresponding reduced polarization density submatrices ρ_{A} and ρ_{B}
(see also backup slides)

$$
\begin{array}{ll}
0 \leq \mathscr{E}[\rho] \leq \ln 3 & \text { for a two-qutrit system } \\
\text { equality holds if and only } & \begin{array}{l}
\text { corresponding to the } \\
\text { maximally entangled state }
\end{array}
\end{array}
$$ if the bipartite is separable

maximum value $4 / 3$ for a pure state

Bell's inequality

Quantum entanglement (witness)

Bell's inequality violation condition $\mathcal{I}_{3}>2$
Maximization of \mathcal{I}_{3} performed point by point, since it depends on $M_{W^{*}}$ (see backup slides for optimized U, V matrices in the region of max entanglement)

$$
\mathscr{C}_{2}=\frac{32 f^{2} M_{V}^{4}\left[m_{H}^{4}-2\left(1+f^{2}\right) m_{H}^{2} M_{V}^{2}+\left(1+4 f^{2}+f^{4}\right) M_{V}^{4}\right]}{\left[m_{H}^{4}-2\left(1+f^{2}\right) m_{H}^{2} M_{V}^{2}+\left(1+10 f^{2}+f^{4}\right) M_{V}^{4}\right]^{2}}
$$

Maximization of \mathcal{I}_{3} performed point by point, since it depends on $M_{Z^{*}}$ (see backup slides for optimized U,V matrices in the region of max entanglement)

Entropy of entanglement for $\mathrm{H} \rightarrow \mathrm{V}$ *

arXiv: 2302.00683 [hep-ph]

$$
H \rightarrow W W^{*} \quad \max =\log [3] \quad H \rightarrow Z Z^{*}
$$

Events and sensitivity
H \rightarrow ZZ*
H \rightarrow W W *

Using MADGRAPH5 @ LO corrected by k factors at N3LO + N3LL

$$
W^{+} \ell^{-} \bar{\nu}_{\ell} \quad Z \ell^{-} \ell^{-}
$$

Gaussian distribution of the 3237 events for the $H \rightarrow W^{+} \ell^{-} \bar{\nu}_{\ell}$ process and of the 217 of the $H \rightarrow Z \ell^{+} \ell^{-}$process. Both sets of events have mean value $\mathcal{I}_{3}=2.88$. The threshold value of 2 for Bell inequality violation is shown as a dashed red line.

Only fully leptonic decays used. Number of events reduced by 25% to account in efficiency of identification of final leptons

- Significance for rejecting the null hypothesis $\mathcal{I}_{3} \leq 2$ is 50 for WW^{*} and 13 for $\mathrm{ZZ}{ }^{*}$
- Results confirm numerical simulations for WW** and ZZ* of A. Barr, PLB 825 (2022) , 2106.01377 [hep-ph]

Fully realistic estimate of the uncertainty is missing, as systematic uncertainties due to unfolding, background, and detector have been only modeled partially
(Results for ZZ are also consistent with corresponding ones in Aguilar-Saavedra et al, 2209.1344` [hep-ph]

Di=boson production in pp collisions Drell-Yan processes

For two VB produced in proton collisions, density matrix is given by the convex combination of the density matrices of the involved parton contributions

$$
-\rho^{q_{1} \bar{q}_{2}}
$$

$$
\rho=\sum_{\left\{q_{1} \bar{q}_{2}\right\}} w^{q_{1} \bar{q}_{2}} \rho^{q_{1} \bar{q}_{2}}
$$ with

$$
\sum_{\left\{q_{1}, \bar{q}_{2}\right\}} w^{q_{1} \bar{q}_{2}}=1
$$

- Sum includes both configuration where the anti-quark originate from either protons

This relation holds $\rho^{\bar{q}_{2} q_{1}}(\Theta)=\rho^{q_{1} \bar{q}_{2}}(\Theta+\pi)$
where

$$
w^{q_{1} \bar{q}_{2}}=\frac{L^{q_{1} \bar{q}_{1}}\left|\overline{\mathcal{M}}_{V_{1} V_{2}}^{q_{1} \bar{q}_{2}}\right|^{2}}{\sum_{\left\{q_{1} \bar{q}_{2}\right\}} L^{q_{1} \bar{q}_{1}}\left|\overline{\mathcal{M}}_{V_{1} V_{2}}^{q_{1} \bar{q}_{2}}\right|^{2}}
$$

$\left|\overline{\mathcal{M}}_{V_{1} V_{2}}^{q_{1} \bar{q}_{2}}\right|^{2} \quad=$ unpolarized square amplitude of the partonic process $q_{1} \bar{q}_{2} \rightarrow V_{1} V_{2}$

Decomposing the matrix density into the Gell-Mann matrix basis
$\rho\left(\lambda_{1}, \lambda_{1}^{\prime}, \lambda_{2}, \lambda_{2}^{\prime}\right)=\left(\frac{1}{9}[\mathbb{1} \otimes \mathbb{1}]+\sum_{a} f_{a}\left[\mathbb{1} \otimes T^{a}\right]+\sum_{a} g_{a}\left[T^{a} \otimes \mathbb{1}\right]+\sum_{a b} h_{a b}\left[T^{a} \otimes T^{b}\right]\right)_{\lambda_{1} \lambda_{1}^{\prime}, \lambda_{2} \lambda_{2}^{\prime}}$
we obtain for the h correlations coefficients in VV production \longrightarrow depend on scattering angle

$$
h_{a b}\left[m_{V V}, \Theta\right]=\frac{\sum_{q=u, d, s} L^{q \bar{q}}(\tau)\left(\tilde{h}_{a b}^{q \bar{q}}\left[m_{V V}, \Theta\right]+\tilde{h}_{a b}^{q \bar{q}}\left[m_{V V}, \Theta+\pi\right]\right)}{\sum_{q=u, d, s} L^{q \bar{q}}(\tau)\left(A^{q \bar{q}}\left[m_{V V}, \Theta\right]+A^{q \bar{q}}\left[m_{V V}, \Theta+\pi\right]\right)}
$$

and analogously for the f_{a} and g_{a} correlation coefficients, where

$$
A^{q \bar{q}}=\left|\overline{\mathcal{M}}_{W W}^{q \bar{q}}\right|^{2} \quad \text { and } \quad \tilde{h}_{a b}=A^{q \bar{q}} h_{a b}
$$

Parton luminosity
main uncertainty on the correlation coefficients comes from the missing higher order QCD corrections
giving approx a 10\% uncertainty on the main entanglement observables
other theoretical uncertainties, mainly from PDF and top-quark mass, is negligible \rightarrow of the order of permille effect

$$
p p \rightarrow W^{+} W^{-}
$$

optimization for maximum value of \mathcal{I}_{3} of Bell's inequality violation is employed point by point in the $\Theta m_{W W}$ space
$\mathcal{B} \rightarrow(U \otimes V)^{\dagger} \cdot \mathcal{B} \cdot(U \otimes V)$
(see backup slides for their expressions in hatched area)

hatched area in the left-plot for $\mathcal{I}_{3}>2$ indicates bin used as reference for our estimation of the significance (see next slides)

Events and sensitivity $\quad p p \rightarrow W^{+} W^{-}$

	(run2) $\mathcal{L}=140 \mathrm{fb}^{-1}$	(Hi-Lumi) $\mathcal{L}=3 \mathrm{ab}^{-1}$
events	36	777

Number of expected events in the kinematic region $m_{W W}>500 \mathrm{GeV}$ and $\cos \Theta<0.25$ at the LHC with $\sqrt{s}=13 \mathrm{TeV}$ and luminosity $\mathcal{L}=140 \mathrm{fb}^{-1}$ (run2) and luminosity $\mathcal{L}=3 \mathrm{ab}^{-1}$ (Hi-lumi). A benchmark efficiency of 0.25 is assumed.

- estimated by using MADGRAPH5 @ LO for cross sections, corrected by the k-factors at the NNLO
N. events reduced of 25% due to efficiency in identification of final leptons

$$
\begin{aligned}
& \text { Hi-Lumi runs } \rightarrow \text { significance } \sim 5 \text { to reject } \\
& \text { the null hypothesis } \mathcal{I}_{3} \leq 2
\end{aligned}
$$

$$
p p \rightarrow W^{+} W^{-}
$$

In the maximum entangled region $m_{W W}=900 \mathrm{GeV}$ and $\cos \Theta=0$.
$\rho=\alpha\left|\Psi_{+-}\right\rangle\left\langle\Psi_{+-}\right|+\beta\left|\Psi_{+-0}\right\rangle\left\langle\Psi_{+-0}\right|+\gamma|00\rangle\langle 00|+\delta\left|\Psi_{0-}\right\rangle\left\langle\Psi_{0-}\right|$
$\alpha \simeq 0.72, \beta \simeq 0.18, \gamma \simeq 0.07$ and $\delta \simeq 0.02 \quad \alpha+\beta+\gamma+\delta=1$

$$
\begin{aligned}
& \left|\Psi_{+-}\right\rangle=\frac{1}{\sqrt{2}}(|++\rangle-|--\rangle) \\
& \left|\Psi_{0-}\right\rangle=\frac{1}{\sqrt{2}}(|0-\rangle+|-0\rangle) \\
& \left|\Psi_{+-0}\right\rangle=\frac{1}{\sqrt{3}}(|++\rangle-|--\rangle+|00\rangle)
\end{aligned}
$$

matrix density is a mixture
dominant contribution comes from the state $\left|\Psi_{+-}\right\rangle$
explaining why \mathscr{C}_{2}, is large but far from maximum value $2 / \sqrt{3} \simeq 1.15$

$$
\text { (run2) } \mathcal{L}=140 \mathrm{fb}^{-1} \quad \text { (Hi-Lumi) } \mathcal{L}=3 \mathrm{ab}^{-1}
$$

events

1
20

$p p \rightarrow Z Z$

Gaussian distribution for 20 events Bell's inequality

\mathcal{I}_{3}

significance 0.6 for rejecting the null hypothesis

No violation of Bell's inequalities in the relevant kinematic regions ($m_{w z} \sim 1 \mathrm{TeV}$). Same conclusions for entanglement.

WW, ZZ, WZ production analyzed also in 2209.13990 [quant-ph] using full simulation at partonic level. conclusions differ from our results (possible underestimated errors..)

Constraining HWWN and HZZ anomalous couplings

with Quantum Tomography at the LHC

Fabbrichesi, Floreanini, EG, Marzola (preliminary)
We use polarization density matrix of the processes

$$
H \rightarrow W W^{*} \quad H \rightarrow Z Z^{*}
$$

to constrain anomalous Higgs couplings to WW and ZZ
Effective Higgs-VV Lagrangian (including SM)

$$
\begin{align*}
& V^{\mu \nu} \rightarrow \text { Field strenath }, V=\mathrm{W}, \mathrm{Z} \\
& \tilde{V}^{\mu \nu}=\epsilon^{\mu \nu \alpha \beta} V_{\alpha \beta} \quad \text { (dual) } \tag{dual}
\end{align*}
$$

$$
\begin{aligned}
\mathcal{L}_{H V V}= & g m_{W} W_{\mu}^{+} W^{-\mu} H+\frac{g}{2 \cos \theta_{W}} m_{Z} Z_{\mu} Z^{\mu} H \\
& -\frac{g}{m_{W}}\left[\frac{\lambda_{1}^{W}}{2} W_{\mu \nu}^{+} W^{-\mu \nu}+\lambda_{2}^{W}\left(W^{+\nu} \partial^{\mu} W_{\mu \nu}^{-}+\text {H.c. }\right)+\frac{\widetilde{\lambda}_{C P}^{W}}{4} W_{\mu \nu}^{+} \widetilde{W}^{-\mu \nu}\right. \\
& \left.+\frac{\lambda_{1}^{Z}}{2} Z_{\mu \nu} Z^{\mu \nu}+\lambda_{2}^{Z} Z^{\nu} \partial^{\mu} Z_{\mu \nu}+\frac{\widetilde{\lambda}_{C P}^{Z}}{4} Z_{\mu \nu} \widetilde{Z}^{\mu \nu}\right] H
\end{aligned}
$$

All limits are at the 95% C.L .
LHC run $2\left(\mathcal{L}=140 \mathrm{fb}^{-1}\right)$
HLumi $\left(\mathcal{L}=3 \mathrm{ab}^{-1}\right)$

Bounds stronger than 1-2 order of magnitude with respect to present CMS bounds [CMS Coll], 1901.00174 [hep-ex] Competitive even with projected bounds from future linear colliders

Sharma, Shivaji, 2207.03862 [hep-ph]

Thank you!

backup slides

A suitable observable (concurrence) to quantify entanglement in a bipartite (A,B) system for a pure state $|\Psi\rangle$ (with matrix density $\rho=|\Psi\rangle\langle\Psi|$) is defined as
concurrence

$$
\mathcal{C}[|\Psi\rangle]=\sqrt{1-\operatorname{Tr}\left[\left(\rho_{r}\right)^{2}\right]}
$$

Rungta, Buzek, Caves, Hillery, Milburn, PRA 64 (2001) $r=A$ or B
pure states vanishes for separable states $|\Psi\rangle=\left|\Psi_{A}\right\rangle \otimes\left|\Psi_{B}\right\rangle$

$$
\rho_{A}=\operatorname{Tr}_{B}[|\Psi\rangle\langle\Psi|] \text { and similar for } \rho_{\mathrm{B}}
$$

Trace performed in the subsystem B

For mixed states with matrix density $\rho=\sum_{i} p_{i}\left|\Psi_{i}\right\rangle\left\langle\Psi_{i}\right|, \quad p_{i} \geq 0, \quad \sum_{i} p_{i}=1$

$$
\mathcal{C}[\rho]=\inf _{\{|\Psi\rangle\}} \sum_{i} p_{i} \mathcal{C}\left[\left|\Psi_{i}\right\rangle\right]
$$

infimum taken over all possible decompositions in pure states
$\mathcal{C}[\rho]$ vanishes for separable states

Acin, Durt, Gisin, Latorre, PRA 65 (2002), quant-ph/0111143

written on the basis of spin-operators, where
S_{3} spin operator $\longrightarrow \operatorname{diag}\{1,0,-1\}$
U, V matrices maximizing the Bell observable \mathcal{I}_{3} in $\mathrm{H} \rightarrow \mathrm{WW}^{*}, \mathrm{ZZ}^{*}$

$$
\begin{aligned}
& \text { for region } M_{W}^{*}=40 \mathrm{GeV} \text { and } M_{Z}^{*}=32 \mathrm{GeV} \text {. } \\
& U_{W}=\left(\begin{array}{ccc}
\frac{4}{11}+\frac{i}{14} & \frac{1}{6}+\frac{9 i}{13} & \frac{3}{5}+\frac{i}{14} \\
-\frac{1}{9}-\frac{6 i}{7} & 0 & \frac{1}{10}+\frac{i}{2} \\
\frac{4}{11}+\frac{i}{12} & -\frac{1}{7}-\frac{7 i}{10} & \frac{3}{5}+\frac{i}{10}
\end{array}\right), \quad V_{W}=\left(\begin{array}{ccc}
-\frac{1}{7}-\frac{7 i}{12} & -\frac{7}{10}-\frac{i}{10} & -\frac{1}{9}-\frac{6 i}{17} \\
\frac{11}{21}+\frac{i}{17} & 0 & -\frac{6}{7}-\frac{i}{26} \\
-\frac{1}{8}-\frac{3 i}{5} & \frac{7}{10}+\frac{i}{8} & -\frac{1}{10}-\frac{5 i}{14}
\end{array}\right) \\
& U_{Z}=\left(\begin{array}{ccc}
-\frac{1}{2}+\frac{3 i}{11} & \frac{7}{13}+\frac{5 i}{11} & \frac{4}{13}-\frac{3 i}{10} \\
-\frac{1}{2}+\frac{3 i}{8} & 0 & -\frac{15}{31}+\frac{5 i}{8} \\
-\frac{1}{5}+\frac{10 i}{19} & -\frac{5}{7} & +\frac{1}{22}-\frac{3 i}{7}
\end{array}\right), \quad V_{Z}=\left(\begin{array}{ccc}
-\frac{1}{7}-\frac{5 i}{12} & \frac{7}{11}+\frac{2 i}{7} & \frac{1}{25}-\frac{5 i}{9} \\
\frac{2}{11}+\frac{10 i}{13} & 0 & \frac{2}{7}+\frac{6 i}{11} \\
\frac{1}{6}+\frac{2 i}{5} & -\frac{11}{16}+\frac{i}{5} & -\frac{1}{3}-\frac{4 i}{9}
\end{array}\right)
\end{aligned}
$$

approximated matrices within 1%, unitary barring $O\left(10^{-2}\right)$
U, V matrices maximizing the Bell observable \mathcal{I}_{3} in $\mathrm{pp} \rightarrow \mathrm{WW}$
corresponding to the hatched area (see plot below)

$$
U_{W}=\left(\begin{array}{ccc}
\frac{1}{50}-\frac{5 i}{9} & -\frac{1}{6}+\frac{3 i}{7} & -\frac{1}{13}+\frac{9 i}{13} \\
\frac{1}{4}-\frac{4 i}{7} & \frac{2}{9}-\frac{5 i}{7} & \frac{1}{5}+\frac{i}{12} \\
\frac{2}{5}-\frac{2 i}{5} & -\frac{1}{9}+\frac{4 i}{9} & \frac{1}{3}-\frac{3 i}{5}
\end{array}\right), \quad V_{W}=\left(\begin{array}{ccc}
-\frac{1}{16}-\frac{4 i}{7} & -\frac{2}{11}+\frac{3 i}{7} & -\frac{1}{8}+\frac{2 i}{3} \\
-\frac{2}{13}+\frac{3 i}{5} & -\frac{3}{11}+\frac{5 i}{7} & -\frac{1}{5}-\frac{i}{13} \\
\frac{1}{3}-\frac{4 i}{9} & -\frac{1}{8}+\frac{3 i}{7} & \frac{3}{8}-\frac{3 i}{5}
\end{array}\right)
$$

approximated matrices within 1%, unitary barring $O\left(10^{-2}\right)$

Spin-1 matrices

$$
S_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad S_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & -i \\
0 & i & 0
\end{array}\right), \quad S_{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Expressed as a function of Gell-Mann matrices

$$
S_{1}=\frac{1}{\sqrt{2}}\left(T^{1}+T^{6}\right), \quad S_{2}=\frac{1}{\sqrt{2}}\left(T^{2}+T^{7}\right), \quad S_{3}=\frac{1}{2} T^{3}+\frac{\sqrt{3}}{2} T^{8}
$$

$$
S_{31}=S_{13}=\frac{1}{\sqrt{2}}\left(T^{1}-T^{6}\right),
$$

$$
S_{12}=S_{21}=T^{5},
$$

$$
S_{23}=S_{32}=\frac{1}{\sqrt{2}}\left(T^{2}-T^{7}\right)
$$

$$
S_{11}=\frac{1}{2 \sqrt{3}} T^{8}+T^{4}-\frac{1}{2} T^{3},
$$

$$
S_{22}=\frac{1}{2 \sqrt{3}} T^{8}-T^{4}-\frac{1}{2} T^{3},
$$

$$
S_{33}=T^{3}-\frac{1}{\sqrt{3}} T^{8}
$$

Gell-Mann basis

$$
\begin{aligned}
T^{1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), & T^{2}=\left(\begin{array}{ccc}
0 & -i & 0 \\
i & 0 & 0 \\
0 & 0 & 0
\end{array}\right), & T^{3}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right) \\
T^{4}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), & T^{5}=\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right), & T^{6}=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \\
T^{7}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right), & T^{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right) . &
\end{aligned}
$$

$\mathbb{1}$ being the 3×3 unit matrix

