

NLO QCD predictions for polarised W⁺Z production with semileptonic decay

Christoph Haitz in collaboration with Ansgar Denner and Giovanni Pelliccioli

Institut für Theoretische Physik 2 Julius-Maximilians-Universität Würzburg

08.03.2023

based on arXiv:2211.09040 (accepted by PRD)

Table of contents

Motivation

2 Definition of polarised cross-sections

- Integrated results
- 5 Differential results

Motivation

- Polarised processes allow for deep insights into spontaneous symmetry breaking
- Polarised cross-sections are very sensitive to beyond-Standard Model effects
- Polarisation is well suited for tests of the Standard Model
- Polarised WZ production processes are a subject of ongoing research

Existing Work on polarised ZW production

- Focus is on purely leptonic decay modes
- Narrow-width approximation
 - MadGraph5 aMC@NLO LO-study, Buarque Franzosi et al. 2020, arXiv:1912.01725 [1]
- Double-pole approximation
 - NLO QCD, Denner and Pelliccioli 2021, arXiv:2010.07149 [2]
 - NLO QCD und NLO EW, Le and Baglio 2022, arXiv:2203.01470 [3], Le et al. 2022, arXiv:2208.09232 [4], Le et al. 2022, arXiv:2302.03324 [5]
- Experimental studies
 - ATLAS 2019, arXiv:1902.05759 [6]
 - CMS 2022, arXiv:2110.11231 [7]
 - ATLAS 2022, arXiv:2211.09435 [8] (next talk)

Definition of polarised cross-sections

• Diagrams with and without the wanted (s-channel) resonance contribute to a given process

• Remove non-resonant diagrams in a gauge-independent way

- This can be achieved by using a pole approximation
 - * Set resonant particles on-shell $\{p_i\} \Rightarrow \{\tilde{p}_i\}$
 - ★ Conserve some off-shell effects by using the off-shell denominators of the propagators and applying the phase-space cuts to the off-shell momenta

$$M\left(\{\tilde{p}\}, p_{res}^2\right) = M_{\mu, \text{production}}\left(\{\tilde{p}\}\right) \frac{N^{\mu\nu}\left(\{\tilde{p}\}\right)}{p_{res}^2 - m^2 - im\Gamma} M_{\nu, \text{decay}}\left(\{\tilde{p}\}\right)$$

Definition of polarised cross-sections

Numerator of the resonant propagator contains a sum over all polarisation states

$$\sum_{\text{polarisations}} \epsilon^*_\mu \epsilon_\nu = -g_{\mu\nu} \quad \text{(Feynman-'t Hooft gauge)}$$

$$M\left(\{\tilde{p}\}, p_{res}^{2}\right) = \sum_{\lambda} M_{\mu, \text{production}}\left(\{\tilde{p}\}\right) \frac{\epsilon_{\lambda}^{\mu*}\left(\{\tilde{p}\}\right) \epsilon_{\lambda}^{\nu}\left(\{\tilde{p}\}\right)}{p_{res}^{2} - m^{2} - im\Gamma} M_{\nu, \text{decay}}\left(\{\tilde{p}\}\right)$$
$$M\left(\{\tilde{p}\}, p_{res}^{2}\right) = \sum_{\lambda} M_{\lambda}\left(\{\tilde{p}\}, p_{res}^{2}\right)$$

Definition of polarised cross-sections

• Take the square of the matrix element to calculate the cross-section

$$\begin{split} \underbrace{\left| \mathcal{M}\left(\{\tilde{p}\}, p_{res}^2\right) \right|^2}_{\text{unpolarised}} &= \sum_{\lambda} \underbrace{\left| \mathcal{M}_{\lambda}\left(\{\tilde{p}\}, p_{res}^2\right) \right|^2}_{\text{polarisation } \lambda} \\ &+ \sum_{\lambda \neq \lambda'} \mathcal{M}_{\lambda}^*\left(\{\tilde{p}\}, p_{res}^2\right) \mathcal{M}_{\lambda'}\left(\{\tilde{p}\}, p_{res}^2\right)}_{\text{interferences}} \end{split}$$

Setup

$$p \, p
ightarrow Z(
ightarrow e^- \, e^+) \, W^+(
ightarrow jets)$$

- Z boson decays leptonically into an electron-positron pair
- W⁺ boson decays hadronically (jet system)
- Polarisation is defined in the center-of-mass frame of the two bosons
- Resolved setup
 - Two light jets (AK4)
 - Jet system = the two jets with an invariant mass closest to the W-mass
- Unresolved setup
 - One massive fat jet (AK8)
 - Jet system = fat jet with the largest transverse momentum

Phase-space cuts

- Phase-space cuts mimic the CMS analysis arXiv:2111.13669 [9]
- Different phase-space cuts are applied in the two setups
- Suppress non-resonant background
- $\bullet~$ Z and W^+ are very boosted
- Anti-kT jet algorithm
 - Resolved: R₀ = 0.4
 - Unresolved: $R_0 = 0.8$

		resolved	unresolved
Jet selection	min p _T	30 GeV	200 GeV
	max y	2.4	2.4
	min $\Delta R_{\mu\pm}$	0.4	0.8
	min <i>M</i>	-	65 GeV
	max M	-	105 GeV
Cuts on the jet system	min p _T	200 GeV	-
(W ⁺ -Boson)	min M	65 GeV	-
	max M	105 GeV	-
Cuts on single leptons	min p _T	40 GeV	40 GeV
	$\max y $	2.4	2.4
Cuts on the lepton pair	min p _T	200 GeV	200 GeV
(Z-Boson)	min M	76 GeV	76 GeV
	max M	106 GeV	106 GeV

state	$\sigma_{\rm LO}$ [fb]	f _{LO} [%]	$\sigma_{\rm NLO}$ [fb]	$f_{\rm NLO}[\%]$	$K_{\rm NLO}$	$K_{\rm NLO}^{\rm (no g)}$
resolved,	$Z(e^+e^-)W^+(jj)$					
unpol.	$1.8567(2)^{+1.2\%}_{-1.4\%}$	100	3.036(2) ^{+6.8%} -5.3%	100	1.635	1.033
$Z_L^{}W_L^+$	0.64603(5) ^{+0.2%} -0.6%	34.8	0.6127(4) ^{+0.9%} -0.7%	20.2	0.948	1.031
$Z_{\rm L}W_{\rm T}^+$	$0.08687(1)^{+0.2\%}_{-0.6\%}$	4.7	0.17012(6) ^{+8.6%} -6.8%	5.6	1.958	0.967
${\sf Z}_{ m T}{\sf W}_{ m L}^+$	$0.08710(1)^{+0.1\%}_{-0.6\%}$	4.7	0.24307(7) ^{+10.2%} -8.2%	8.0	2.791	1.017
$Z_T^- W_T^+$	$0.97678(7)^{+2.0\%}_{-2.2\%}$	52.6	$2.0008(7)^{+8.9\%}_{-7.1\%}$	65.8	2.048	1.059
interf.	0.0595(1)	3.2	0.009(2)	0.4	-	-
unresolve	d, Z(e ⁺ e ⁻)W ⁺ (J)					
unpol.	$1.6879(2)^{+1.9\%}_{-2.1\%}$	100	$3.112(2)^{+7.6\%}_{-6.1\%}$	100	1.843	1.193
$Z_L^{}W_L^+$	$0.61653(5)^{+1.0\%}_{-1.3\%}$	36.5	0.6799(5) ^{+0.9%} -0.7%	21.9	1.103	1.170
$Z_{\rm L}W_{\rm T}^+$	$0.06444(1)^{+0.7\%}_{-1.0\%}$	3.8	$0.17584(6)^{+10.8\%}_{-8.6\%}$	5.7	2.729	1.158
${\sf Z}_{ m T}{\sf W}_{ m L}^+$	$0.07437(1)^{+0.6\%}_{-0.9\%}$	4.4	$0.24742(8)^{+11.0\%}_{-8.9\%}$	8.0	3.327	1.193
$Z_T^- W_T^+$	$0.88233(9)^{+2.9\%}_{-2.9\%}$	52.3	$2.0041(8)^{+9.6\%}_{-7.7\%}$	64.3	2.271	1.227
interf.	0.0503(3)	3.0	0.004(2)	0.1	-	_

state	$\sigma_{\rm LO}$ [fb]	$f_{\rm LO}[\%]$	$\sigma_{ m NLO}$ [fb]	$f_{\rm NLO}$ [%]	$K_{\rm NLO}$	$K_{\rm NLO}^{\rm (no g)}$
resolved,	$Z(e^+e^-)W^+(jj)$					
unpol.	$1.8567(2)^{+1.2\%}_{-1.4\%}$	100	3.036(2) ^{+6.8%} -5.3%	100	1.635	1.033
$Z_L^{}W_L^+$	0.64603(5) ^{+0.2%} -0.6%	34.8	0.6127(4) ^{+0.9%} -0.7%	20.2	0.948	1.031
$Z_{\rm L}W_{\rm T}^+$	$0.08687(1)^{+0.2\%}_{-0.6\%}$	4.7	0.17012(6) ^{+8.6%} -6.8%	5.6	1.958	0.967
${\sf Z}_{ m T}{\sf W}_{ m L}^+$	$0.08710(1)^{+0.1\%}_{-0.6\%}$	4.7	0.24307(7) ^{+10.2%} -8.2%	8.0	2.791	1.017
$Z_T^- W_T^+$	$0.97678(7)^{+2.0\%}_{-2.2\%}$	52.6	$2.0008(7)^{+8.9\%}_{-7.1\%}$	65.8	2.048	1.059
interf.	0.0595(1)	3.2	0.009(2)	0.4	-	-
unresolve	d, Z(e ⁺ e ⁻)W ⁺ (J)					
unpol.	$1.6879(2)^{+1.9\%}_{-2.1\%}$	100	$3.112(2)^{+7.6\%}_{-6.1\%}$	100	1.843	1.193
$Z_L^{}W_L^+$	$0.61653(5)^{+1.0\%}_{-1.3\%}$	36.5	0.6799(5) ^{+0.9%} -0.7%	21.9	1.103	1.170
$Z_{\rm L}W_{\rm T}^+$	$0.06444(1)^{+0.7\%}_{-1.0\%}$	3.8	$0.17584(6)^{+10.8\%}_{-8.6\%}$	5.7	2.729	1.158
${\sf Z}_{ m T}{\sf W}_{ m L}^+$	$0.07437(1)^{+0.6\%}_{-0.9\%}$	4.4	$0.24742(8)^{+11.0\%}_{-8.9\%}$	8.0	3.327	1.193
$Z^{}_{\mathrm{T}}W^{+}_{\mathrm{T}}$	$0.88233(9)^{+2.9\%}_{-2.9\%}$	52.3	$2.0041(8)^{+9.6\%}_{-7.7\%}$	64.3	2.271	1.227
interf.	0.0503(3)	3.0	0.004(2)	0.1	-	

 Large NLO corrections mostly from gluon initiated real emission processes

47 ▶

state	$\sigma_{\rm LO}$ [fb]	f _{LO} [%]	$\sigma_{\rm NLO}$ [fb]	$f_{\rm NLO}[\%]$	$K_{\rm NLO}$	$K_{\rm NLO}^{\rm (no g)}$
resolved,	$Z(e^+e^-)W^+(jj)$					
unpol.	$1.8567(2)^{+1.2\%}_{-1.4\%}$	100	3.036(2) ^{+6.8%} -5.3%	100	1.635	1.033
$Z_L^{}W_L^+$	0.64603(5) ^{+0.2%} -0.6%	34.8	0.6127(4) ^{+0.9%} -0.7%	20.2	0.948	1.031
$Z_{\rm L}W_{\rm T}^+$	$0.08687(1)^{+0.2\%}_{-0.6\%}$	4.7	0.17012(6) ^{+8.6%} -6.8%	5.6	1.958	0.967
${\sf Z}_{ m T}{\sf W}_{ m L}^+$	$0.08710(1)^{+0.1\%}_{-0.6\%}$	4.7	0.24307(7) ^{+10.2%} -8.2%	8.0	2.791	1.017
$Z_T^- W_T^+$	$0.97678(7)^{+2.0\%}_{-2.2\%}$	52.6	$2.0008(7)^{+8.9\%}_{-7.1\%}$	65.8	2.048	1.059
interf.	0.0595(1)	3.2	0.009(2)	0.4	-	-
unresolve	d, Z(e ⁺ e ⁻)W ⁺ (J)					
unpol.	$1.6879(2)^{+1.9\%}_{-2.1\%}$	100	$3.112(2)^{+7.6\%}_{-6.1\%}$	100	1.843	1.193
$Z_L^{}W_L^+$	$0.61653(5)^{+1.0\%}_{-1.3\%}$	36.5	0.6799(5) ^{+0.9%} -0.7%	21.9	1.103	1.170
$Z_{\rm L}W_{\rm T}^+$	$0.06444(1)^{+0.7\%}_{-1.0\%}$	3.8	$0.17584(6)^{+10.8\%}_{-8.6\%}$	5.7	2.729	1.158
${\sf Z}_{ m T}{\sf W}_{ m L}^+$	$0.07437(1)^{+0.6\%}_{-0.9\%}$	4.4	$0.24742(8)^{+11.0\%}_{-8.9\%}$	8.0	3.327	1.193
$Z^{}_{\mathrm{T}}W^{+}_{\mathrm{T}}$	$0.88233(9)^{+2.9\%}_{-2.9\%}$	52.3	$2.0041(8)^{+9.6\%}_{-7.7\%}$	64.3	2.271	1.227
interf.	0.0503(3)	3.0	0.004(2)	0.1	-	_

- Large contribution of the purely longitudinal polarisation state compared to more inclusive set-ups (no strong p_T cut) [2]
- Goldstone boson contributions are unsuppressed because diagrams with three gauge-boson vertices contribute at LO

Christoph Haitz (Univ. of Würzburg)

state	$\sigma_{\rm LO}$ [fb]	$f_{\rm LO}[\%]$	$\sigma_{ m NLO}$ [fb]	$f_{\rm NLO}$ [%]	$K_{\rm NLO}$	$K_{\rm NLO}^{\rm (no g)}$
resolved,	$Z(e^+e^-)W^+(jj)$					
unpol.	$1.8567(2)^{+1.2\%}_{-1.4\%}$	100	3.036(2) ^{+6.8%} -5.3%	100	1.635	1.033
$Z_L^{}W_L^+$	0.64603(5) ^{+0.2%} -0.6%	34.8	0.6127(4) ^{+0.9%} -0.7%	20.2	0.948	1.031
$Z_{\rm L}W_{\rm T}^+$	$0.08687(1)^{+0.2\%}_{-0.6\%}$	4.7	0.17012(6) ^{+8.6%} -6.8%	5.6	1.958	0.967
${\sf Z}_{ m T}{\sf W}_{ m L}^+$	$0.08710(1)^{+0.1\%}_{-0.6\%}$	4.7	0.24307(7) ^{+10.2%} -8.2%	8.0	2.791	1.017
$Z_T^- W_T^+$	$0.97678(7)^{+2.0\%}_{-2.2\%}$	52.6	$2.0008(7)^{+8.9\%}_{-7.1\%}$	65.8	2.048	1.059
interf.	0.0595(1)	3.2	0.009(2)	0.4	-	_
unresolve	d, Z(e ⁺ e ⁻)W ⁺ (J)					
unpol.	$1.6879(2)^{+1.9\%}_{-2.1\%}$	100	$3.112(2)^{+7.6\%}_{-6.1\%}$	100	1.843	1.193
$Z_{\rm L}W_{\rm L}^+$	$0.61653(5)^{+1.0\%}_{-1.3\%}$	36.5	0.6799(5) ^{+0.9%} -0.7%	21.9	1.103	1.170
$Z_{\rm L}W_{\rm T}^+$	$0.06444(1)^{+0.7\%}_{-1.0\%}$	3.8	$0.17584(6)^{+10.8\%}_{-8.6\%}$	5.7	2.729	1.158
$Z_{\mathrm{T}}W_{\mathrm{L}}^{+}$	$0.07437(1)^{+0.6\%}_{-0.9\%}$	4.4	$0.24742(8)^{+11.0\%}_{-8.9\%}$	8.0	3.327	1.193
$Z_T^- W_T^+$	$0.88233(9)^{+2.9\%}_{-2.9\%}$	52.3	$2.0041(8)^{+9.6\%}_{-7.7\%}$	64.3	2.271	1.227
interf.	0.0503(3)	3.0	0.004(2)	0.1	-	_

- Significant differences between the resolved and unresolved setup at LO caused by the recombination of the jets
- Differences become smaller at NLO

state	$\sigma_{\rm LO}$ [fb]	$f_{\rm LO}[\%]$	$\sigma_{ m NLO}$ [fb]	$f_{\rm NLO}$ [%]	$K_{\rm NLO}$	$K_{\rm NLO}^{\rm (no g)}$
resolved,	$Z(e^+e^-)W^+(jj)$					
unpol.	$1.8567(2)^{+1.2\%}_{-1.4\%}$	100	3.036(2) ^{+6.8%} -5.3%	100	1.635	1.033
$Z_L^{}W_L^+$	0.64603(5) ^{+0.2%} -0.6%	34.8	0.6127(4) ^{+0.9%} -0.7%	20.2	0.948	1.031
$Z_{\rm L}^{}W_{\rm T}^{+}$	$0.08687(1)^{+0.2\%}_{-0.6\%}$	4.7	0.17012(6) ^{+8.6%} -6.8%	5.6	1.958	0.967
$Z_{\mathrm{T}}W_{\mathrm{L}}^{+}$	$0.08710(1)^{+0.1\%}_{-0.6\%}$	4.7	0.24307(7) ^{+10.2%} -8.2%	8.0	2.791	1.017
$z_{\rm T}^{} W_{\rm T}^{+}$	$0.97678(7)^{+2.0\%}_{-2.2\%}$	52.6	$2.0008(7)^{+8.9\%}_{-7.1\%}$	65.8	2.048	1.059
interf.	0.0595(1)	3.2	0.009(2)	0.4	-	-
unresolve	d, Z(e ⁺ e ⁻)W ⁺ (J)					
unpol.	$1.6879(2)^{+1.9\%}_{-2.1\%}$	100	$3.112(2)^{+7.6\%}_{-6.1\%}$	100	1.843	1.193
$Z_L^{}W_L^+$	$0.61653(5)^{+1.0\%}_{-1.3\%}$	36.5	0.6799(5) ^{+0.9%} -0.7%	21.9	1.103	1.170
$Z_{\rm L}^{}W_{\rm T}^{+}$	$0.06444(1)^{+0.7\%}_{-1.0\%}$	3.8	$0.17584(6)^{+10.8\%}_{-8.6\%}$	5.7	2.729	1.158
$Z_{\mathrm{T}}W_{\mathrm{L}}^{+}$	$0.07437(1)^{+0.6\%}_{-0.9\%}$	4.4	$0.24742(8)^{+11.0\%}_{-8.9\%}$	8.0	3.327	1.193
$z_{\rm T}^{} W_{\rm T}^{+}$	$0.88233(9)^{+2.9\%}_{-2.9\%}$	52.3	$2.0041(8)^{+9.6\%}_{-7.7\%}$	64.3	2.271	1.227
interf.	0.0503(3)	3.0	0.004(2)	0.1	-	-

- The interference contribution is small
- Interference becomes smaller at NLO

-

Comparison background

	resolved		unresolved	
process	$\sigma_{ m LO}$ [fb]	ratio over full ${\cal O}(lpha^4)$	$\sigma_{ m LO}$ [fb]	ratio over full ${\cal O}(lpha^4)$
DPA ZW ⁺	$1.8567(2)^{+1.2\%}_{-1.4\%}$	0.353	$1.6879(2)^{+1.9\%}_{-2.1\%}$	0.425
DPA ZW ⁻	$1.0527(1)^{+1.3\%}_{-1.6\%}$	0.200	$0.9003(1)^{+2.0\%}_{-2.1\%}$	0.227
DPA ZZ	$2.1430(3)^{+1.3\%}_{-1.6\%}$	0.408	$1.2804(2)^{+2.6\%}_{-2.7\%}$	0.323
DPA Z <i>V</i>	$5.0523(4)^{+1.3\%}_{-1.5\%}$	0.961	$3.8685(3)^{+2.2\%}_{-2.3\%}$	0.975
full $O(\alpha^4)$	$5.253(1)^{+1.2\%}_{-1.5\%}$	1.000	$3.967(2)^{+2.1\%}_{-2.3\%}$	1.000
full $O(\alpha_{s}\alpha^{3})$	$-0.3124(6)^{+9.2\%}_{-10.7\%}$	-0.059	$-0.2145(6)^{+9.7\%}_{-11.4\%}$	-0.054
full $O(\alpha_s^2 \alpha^2)$	$97.91(7)^{+24.3\%}_{-18.4\%}$	18.638	$62.55(7)^{+25.0\%}_{-18.8\%}$	15.768

- Non-resonant background
- $\bullet~\mbox{Resonant}~\mbox{ZZ}~\mbox{and}~\mbox{ZW}^-$ pair production background
 - Have to be treated as additional contributions

Comparison background

	resolved		unresolved	
process	$\sigma_{ m LO}$ [fb]	ratio over full ${\cal O}(lpha^4)$	$\sigma_{ m LO}$ [fb]	ratio over full ${\cal O}(lpha^4)$
DPA ZW ⁺	$1.8567(2)^{+1.2\%}_{-1.4\%}$	0.353	$1.6879(2)^{+1.9\%}_{-2.1\%}$	0.425
DPA ZW ⁻	$1.0527(1)^{+1.3\%}_{-1.6\%}$	0.200	$0.9003(1)^{+2.0\%}_{-2.1\%}$	0.227
DPA ZZ	$2.1430(3)^{+1.3\%}_{-1.6\%}$	0.408	$1.2804(2)^{+2.6\%}_{-2.7\%}$	0.323
DPA Z <i>V</i>	$5.0523(4)^{+1.3\%}_{-1.5\%}$	0.961	$3.8685(3)^{+2.2\%}_{-2.3\%}$	0.975
full $O(\alpha^4)$	$5.253(1)^{+1.2\%}_{-1.5\%}$	1.000	$3.967(2)^{+2.1\%}_{-2.3\%}$	1.000
full $O(\alpha_{s}\alpha^{3})$	$-0.3124(6)^{+9.2\%}_{-10.7\%}$	-0.059	$-0.2145(6)^{+9.7\%}_{-11.4\%}$	-0.054
full $O(\alpha_s^2 \alpha^2)$	$97.91(7)^{+24.3\%}_{-18.4\%}$	18.638	$62.55(7)^{+25.0\%}_{-18.8\%}$	15.768

• DPA approximates the full electroweak process well (2% - 4%)

< 47 ▶

Comparison background

	resolved		unresolved	
process	$\sigma_{ m LO}$ [fb]	ratio over full ${\cal O}(lpha^4)$	$\sigma_{ m LO}$ [fb]	ratio over full ${\cal O}(lpha^4)$
DPA ZW ⁺	$1.8567(2)^{+1.2\%}_{-1.4\%}$	0.353	$1.6879(2)^{+1.9\%}_{-2.1\%}$	0.425
DPA ZW ⁻	$1.0527(1)^{+1.3\%}_{-1.6\%}$	0.200	$0.9003(1)^{+2.0\%}_{-2.1\%}$	0.227
DPA ZZ	$2.1430(3)^{+1.3\%}_{-1.6\%}$	0.408	$1.2804(2)^{+2.6\%}_{-2.7\%}$	0.323
DPA Z <i>V</i>	$5.0523(4)^{+1.3\%}_{-1.5\%}$	0.961	$3.8685(3)^{+2.2\%}_{-2.3\%}$	0.975
full $O(\alpha^4)$	$5.253(1)^{+1.2\%}_{-1.5\%}$	1.000	$3.967(2)^{+2.1\%}_{-2.3\%}$	1.000
full $O(\alpha_{s}\alpha^{3})$	$-0.3124(6)^{+9.2\%}_{-10.7\%}$	-0.059	$-0.2145(6)^{+9.7\%}_{-11.4\%}$	-0.054
full $O(\alpha_s^2 \alpha^2)$	$97.91(7)^{+24.3\%}_{-18.4\%}$	18.638	$62.55(7)^{+25.0\%}_{-18.8\%}$	15.768

• Very large QCD background that needs to be subtracted before carrying out a polarisation analysis

Differential results

- Differential cross-sections show the dependence on physical observables
- Differences of the two setups and the polarisation states
- Polarisation dependent variables are of particular interest
- Shapes of the distributions are needed for the measurement of polarisation fractions

Electron decay angle $\cos\left(\vartheta_{e^{-}}^{*,\mathrm{CM}}\right) = \frac{\vec{p}_{e^{-}}^{*} \cdot \vec{p}_{e^{+}e^{-}}^{\mathrm{CM}}}{|\vec{p}_{e^{-}}^{*}||\vec{p}_{e^{+}e^{-}}^{\mathrm{CM}}|}$

Christoph Haitz (Univ. of Würzburg)

08.03.2023

Electron decay angle $\cos\left(\vartheta_{e^-}^{*,\mathrm{CM}}\right) = \frac{\vec{p}_{e^-}^{*} \cdot \vec{p}_{e^+e^-}^{\mathrm{CM}}}{|\vec{p}_{e^+e^-}^{*}||\vec{p}_{e^+e^-}^{\mathrm{CM}}|}$

08.03.2023 12/20

Electron decay angle $\cos\left(\vartheta_{e^{-}}^{*,CM}\right) = \frac{\vec{p}_{e^{-}}^{*} \cdot \vec{p}_{e^{+}e^{-}}^{CM}}{|\vec{p}_{e^{+}e^{-}}^{*}||\vec{p}_{e^{+}e^{-}}^{CM}|}$

Positron transverse momentum $p_{T,e^+} = \sqrt{p_{1,e^+}^2 + p_{2,e^+}^2}$

Christoph Haitz (Univ. of Würzburg)

 ZW^+ production

08.03.2023 13 / 20

Positron transverse momentum $p_{T,e^+} = \sqrt{p_{1,e^+}^2 + p_{2,e^+}^2}$

08.03.2023 13 / 20

(a)

三日 のへの

Positron transverse momentum $p_{T,e^+} = \sqrt{p_{1,e^+}^2 + p_{2,e^+}^2}$

08.03.2023 13 / 20

< /□ > < □

I= nan

Scattering angle $\cos(\vartheta_{scatt}) = \frac{|p_{e^+e^-,z}^{CM}|}{|\vec{p}_{e^+e^-}^{CM}|}$

Christoph Haitz (Univ. of Würzburg)

ZW⁺ production

08.03.2023 1

Scattering angle $\cos(\vartheta_{scatt}) = \frac{|p_{e^+e^-,z}^{CM}|}{|\vec{p}_{e^+e^-}^{CM}|}$

Christoph Haitz (Univ. of Würzburg)

08.03.2023

Scattering angle $\cos(\vartheta_{scatt}) = \frac{|p_{e^+e^-,z}^{\text{CM}}|}{|\vec{p}_{e^+e^-}|}$

Christoph Haitz (Univ. of Würzburg)

08.03.2023

Invariant mass jet-system $M_J = \sqrt{p_J^2}$

Christoph Haitz (Univ. of Würzburg)

ZW⁺ production

08.03.2023 15 / 20

Invariant mass jet-system $M_J = \sqrt{p_J^2}$

Christoph Haitz (Univ. of Würzburg)

08.03.2023

Decay angle hardest decay-jet $\cos\left(\vartheta_{j_1}^{*,\mathrm{CM}}\right) = \frac{\vec{p}_{j_1}^{*} \cdot \vec{p}_{\mathrm{J}}^{\mathrm{CM}}}{|\vec{p}_{j_1}^{*}||\vec{p}_{\mathrm{J}}^{\mathrm{CM}}|}$

EL OQO

< ⊒ >

47 ▶

Decay angle hardest decay-jet $\cos\left(\vartheta_{j_1}^{*,CM}\right) = \frac{\vec{p}_{j_1}^* \cdot \vec{p}_J^{CM}}{|\vec{p}_{i_1}^*||\vec{p}_J^{CM}|}$

This variable is very sensitive to the polarisation of the W⁺ boson similar to the decay angles of the leptons

The jets can only be distinguished by their transverse momentum or other measurable quantities not by their flavour

16 / 20

-

Decay angle hardest decay-jet $\cos\left(\vartheta_{j_{i}}^{*,CM}\right) = \frac{\vec{p}_{j_{i}}^{*} \cdot \vec{p}_{J}^{CM}}{|\vec{p}_{i}^{*}||\vec{p}_{T}^{CM}|}$

-

Decay angle hardest decay-jet $\cos\left(\vartheta_{j_{1}}^{*,CM}\right) = \frac{\vec{p}_{j_{1}}^{*} \cdot \vec{p}_{J}^{CM}}{|\vec{p}_{L}^{*}||\vec{p}_{T}^{CM}|}$

Summary

- $\bullet\,$ Calculated the polarised cross-sections for ZW^+ production with semileptonic decay
 - Used the double-pole approximation to define polarised ZW⁺ production
 - Used methods can be directly extended to the calculation of the NLO QCD corrections to semileptonic decays of other processes
 - $\star\,$ Resonant background ZZ and ZW $^-$ production
 - ★ Vector-boson pair production processes
 - ★ Vector-boson scattering processes
- Hadronic decays are different from purely leptonic decays
 - Higher event rate
 - Very large QCD background and resonant ZZ, ZW⁻ background
- Many observables are well suited to distinguish the polarisation states
 - This sensitivity remains even when the jets are recombined to one jet and become indistinguishable (unresolved setup)

Christoph Haitz (Univ. of Würzburg)

Bibliography I

- D. Buarque Franzosi, O. Mattelaer, R. Ruiz, and S. Shil, Automated predictions from polarized matrix elements, JHEP 04 (2020) 082, [arXiv:1912.01725].
- A. Denner and G. Pelliccioli, NLO QCD predictions for doubly-polarized WZ production at the LHC, Phys. Lett. B 814 (2021) 136107, [arXiv:2010.07149].
- D. N. Le and J. Baglio, *Doubly-polarized WZ hadronic cross* sections at NLO QCD+EW accuracy, arXiv:2203.01470.
- D. N. Le, J. Baglio, and T. N. Dao, *Doubly-polarized WZ* hadronic production at NLO QCD+EW: Calculation method and further results, arXiv:2208.09232.
- T. N. Dao and D. N. Le, *Enhancing the doubly-longitudinal* polarization in WZ production at the LHC, arXiv:2302.03324.

Bibliography II

- ATLAS Collaboration, Measurement of W[±]Z production cross sections and gauge boson polarisation in pp collisions at √s = 13 TeV with the ATLAS detector, Eur. Phys. J. C 79 (2019) 535, [arXiv:1902.05759].
- CMS Collaboration, Measurement of the inclusive and differential WZ production cross sections, polarization angles, and triple gauge couplings in pp collisions at $\sqrt{s} = 13$ TeV, Journal of High Energy Physics **2022** (jul, 2022) [arXiv:2110.11231].
- ATLAS Collaboration, Observation of gauge boson joint-polarisation states in $W^{\pm}Z$ production from pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, arXiv:2211.09435.

DDO FE 4EV 4E

Bibliography III

CMS Collaboration, Search for heavy resonances decaying to ZZ or ZW and axion-like particles mediating nonresonant ZZ or ZH production at $\sqrt{s} = 13$ TeV, JHEP **04** (2022) 087, [arXiv:2111.13669].

白 ト イヨト イヨト ヨヨ のくら

Backup Slides

Christoph Haitz (Univ. of Würzburg)

<ロ> <問> < 回> < 回> < 回> < 回> < 回> < 回< の<()</p>

Dominant Diagrams LT TL

- For these diagrams the longitudinally polarised boson and the additional quark are predominantly emitted in a similar spatial direction
- This allows for a lower transverse momentum of the longitudinally polarised boson
- The lower transverse momentum leads to less unitarity cancellations

Results without p_T cut on the jet system

state	$\sigma_{\rm LO}$ [fb]	f _{LO} [%]	$\sigma_{\rm NLO}$ [fb]	f _{NLO} [%]	$K_{\rm NLO}$	$K_{\rm NLO}^{\rm (no g)}$
resolved (no minimum <i>pt</i> jj cut), Z(e ⁺ e ⁻)W ⁺ (jj)						
unpol.	$1.8564(1)^{+1.2\%}_{-1.4\%}$	100	5.5388(8) ^{+10.6%} -8.6%	100	2.984	1.371
$Z_{\rm L}^{}W_{\rm L}^{+}$	0.64605(3) ^{+0.2%} -0.6%	34.8	$0.7525(4)^{+1.5\%}_{-1.2\%}$	13.6	1.165	1.194
$Z_{\rm L}W_{\rm T}^+$	$0.08687(1)^{+0.2\%}_{-0.6\%}$	4.7	$0.3057(1)^{+11.4\%}_{-9.2\%}$	5.5	3.519	1.462
${\sf Z}_{ m T}{\sf W}_{ m L}^+$	$0.08710(1)^{+0.1\%}_{-0.6\%}$	4.7	$1.0486(1)^{+14.6\%}_{-11.9\%}$	18.9	12.04	2.408
$Z_T^- W_T^+$	$0.97677(7)^{+2.0\%}_{-2.2\%}$	52.6	$3.5506(9)^{+11.8\%}_{-9.6\%}$	64.1	3.635	1.424
interf.	0.0595(1)	3.2	-0.119(2)	-2.1	-	-

- LO results are unchanged
- NLO corrections become larger in particular for TL

Results without p_T cut on the jet system

Results without p_T cut on the jet system

