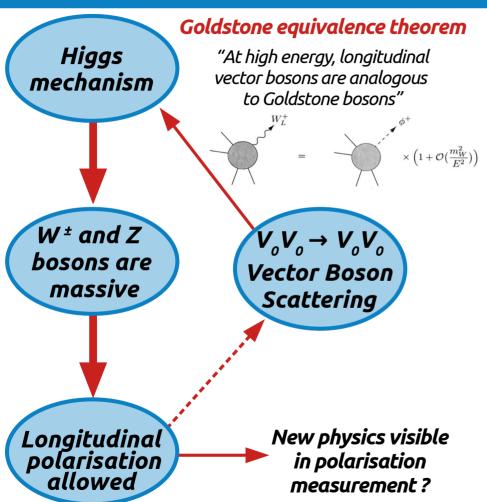
# Observation of gauge boson joint-polarisation states in WZ production in ATLAS

Luka SELEM


LHC EW WG - Multi Boson Polarisation session 08/03/2023







## Why study polarisation?



VBS  $V_0V_0 \rightarrow V_0V_0$  beyond reach for now

→ W<sup>±</sup>Z bosons joint-polarisation state in inclusive selection as **a first step** 

#### Polarisation as a handle to new physics

→ Resurrection of interference term with EFT in angular variables [arXiv:1708.07823]

#### Recent polarised theoretical calculations

- → Check predictions at NLO QCD or NLO QCD+EW
- → e.g. WZ: NLO QCD in 2020 [arXiv:2010.07149], NLO QCD+EW in March 2022 [arXiv:2203.01470]

## Status of polarisation in diboson systems

Only diboson process accessible for such measurements:  $e^+e^- \rightarrow W^+W^-$ 

#### Single W boson polarisation measurements:

→ L3 [arXiv:0301027], OPAL [arXiv:0312047], DELPHI [arXiv:0801.1235]

#### Joint-polarisation measurements:

- → L3 [arXiv:0501036]: only correlations between bosons polarisation (decay planes)
- $\rightarrow$  **DELPHI** [arXiv:0908.1023]: **not sensitive** enough to  $f_{00}$
- $\rightarrow$  OPAL [arXiv:0009021]: almost 3 $\sigma$  for  $f_{00}$ , but tension with Standard Model

$$\bar{\rho}_{TT} = (67 \pm 8)\%,$$

$$\bar{\rho}_{LT} = (30 \pm 8)\%,$$

$$\bar{\rho}_{LL} = (3 \pm 7)\%.$$

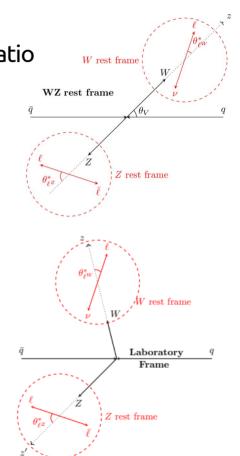
|                                    | Measured                    | Expected          |
|------------------------------------|-----------------------------|-------------------|
| $\sigma_{ m TT}/\sigma_{ m total}$ | $0.781 \pm 0.090 \pm 0.033$ | $0.572 \pm 0.010$ |
| $\sigma_{ m LL}/\sigma_{ m total}$ | $0.201 \pm 0.072 \pm 0.018$ | $0.086 \pm 0.008$ |
| $\sigma_{ m TL}/\sigma_{ m total}$ | $0.018 \pm 0.147 \pm 0.038$ | $0.342 \pm 0.016$ |

#### DELPHI results

OPAL results

#### Measurements at LHC

#### Diboson process chosen: $p p \rightarrow W^{\pm} Z$


→ Best compromise between cross section and signal to background ratio

#### Single boson polarisation in WZ production

- **ATLAS**: in WZ rest frame,  $L = 36 \text{ fb}^{-1}$  [arXiv:1902.05759]
- **CMS**: in Laboratory frame, L = **137 fb**<sup>-1</sup> [arXiv:2110.11231]

#### Recent ATLAS polarisation measurement [arXiv:2211.09435]:

- Joint-polarisation fractions in WZ
- Improvement on single boson polarisation fractions,  $L = 139 \text{ fb}^{-1}$
- → First observation ever of the longitudinal-longitudinal joint-polarisation state in diboson events



## Polarisation in WZ pair production

## WZ inclusive production

**Experimental signature:** 

Variable

$$\mathrm{p} \ \mathrm{p} \ o \ell \ \bar{\ell} \ \ell' \ 
u_{\ell'} + X$$

Total Fiducial inclusive ATLAS tracker of the server of the serve

Select sizeable missing  $E_{\tau}$  (neutrino)

Leptons isolation

ATLAS tracker available

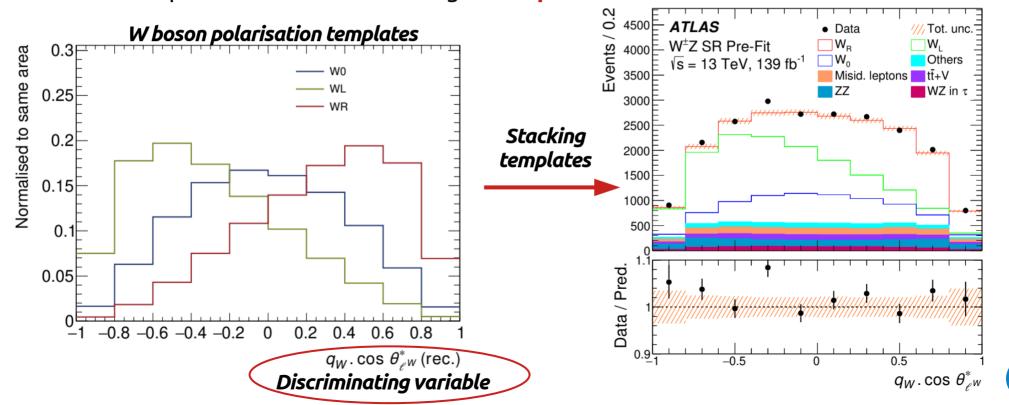
Reduce background (fake) leptons

Reduce virtual photons y\*: on-shell Z

Lepton  $|\eta|$ > 15, > 20 $p_{\rm T}$  of  $\ell_Z$ ,  $p_{\rm T}$  of  $\ell_W$  [GeV]  $|m_Z - m_Z^{PDG}| < 10$  $m_Z$  range [GeV]  $m_{\scriptscriptstyle {
m T}}^W \, [{
m GeV}]$ > 30  $\Delta R(\ell_Z^-, \ell_Z^+), \Delta R(\ell_Z, \ell_W)$ > 0.2, > 0.3

Irreducible Background (with 3 or more leptons): 18% of selected events

- **ZZ: 7.5%** , **ttZ and ttW: 4%** , others...
- → Estimated from Monte Carlo generation


**Reducible Background** (with at least 1 fake lepton): 5% of selected events

- « Misidentified Leptons » background mainly from Z+v, t tbar, Z+jets
- → Estimated by a data driven matrix method

## How to measure polarisation

**Method:** Here for single boson polarisation measurement

- Generate polarisation templates of a discriminating variable
- Extract polarisation fractions through a template fit



## Challenges of this analysis

- Polarisation definition: Not Lorentz invariant! Need to define a frame
- Low statistics: Expected yield for WZ leptonic signal events with full Run 2: ~ 17 000 events
  - $\rightarrow$  Around 0.2 for  $f_0$  of W or Z: ~3500 events
  - → Around 0.2x0.2 = 0.04 for  $f_{00}$ : ~ 1000 events
- Discriminating variable: should distinguish for both bosons polarisation at once
  - $\Rightarrow$  3 x 3 = 9 configurations, reduced to 4 by merging **Left** and **Right** in **Transverse** polarisation
- NLO template: many efforts to obtain polarised templates at highest possible QCD order
  - → Unbiased measurement

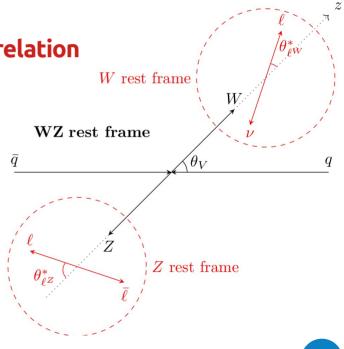
## Definition of polarisation fractions

Polarisation fractions are **NOT Lorentz invariant** 

→ Need to **choose a frame** 

**WZ rest frame** for joint-polarisation and single boson polarisation (so-called Modified Helicity frame)

- Allow to meaningfully **compare** both
- Longitudinal fractions of both bosons have maximum decorrelation


#### Defined from the joint spin density matrix:

$$\rho_{\lambda_{W}\lambda'_{W}\lambda_{Z}\lambda'_{Z}} \equiv \frac{1}{C} \times \sum_{\mu_{q}\mu_{\bar{q}}} F_{\lambda_{W}\lambda_{Z}}^{(\mu_{q}\mu_{\bar{q}})} F_{\lambda'_{W}\lambda'_{Z}}^{(\mu_{q}\mu_{\bar{q}})*} \quad c = \sum_{\mu_{q}\mu_{\bar{q}}\lambda_{W}\lambda_{Z}} \left| F_{\lambda_{W}\lambda_{Z}}^{(\mu_{q}\mu_{\bar{q}})} \right|^{2} \quad \bar{q} = f_{00} \quad = \rho_{0000} ,$$

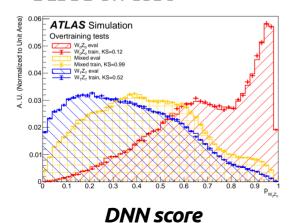
$$f_{TT} = \rho_{++--} + \rho_{--++} + \rho_{----} + \rho_{++++} ,$$

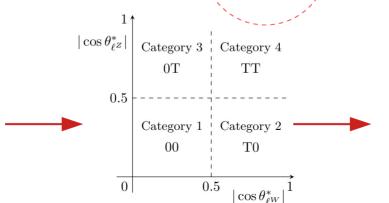
$$f_{0T} = \rho_{00--} + \rho_{00++} ,$$

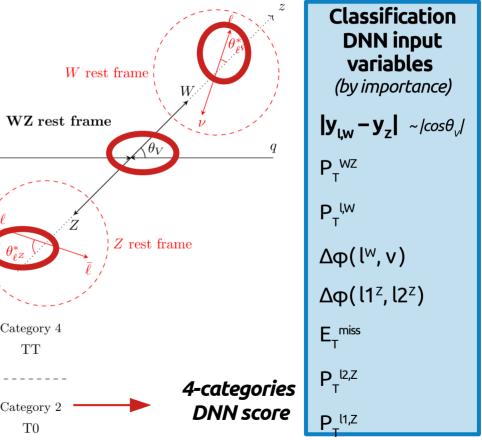
$$f_{T0} = \rho_{--00} + \rho_{++00} .$$



## Joint-polarisation templates


## Variable for the joint-polarisation


#### Joint-polarisation fraction measurement:


– Analytical variable  $|\cos\theta_v|$  not discriminant enough

 Classification DNN between all 4 jointpolarisation states: still poorly discriminant between 0T and T0


– Split DNN score for 00 in **4 categories** based on  $\cos \theta^*$ 







## Need for NLO accurate templates



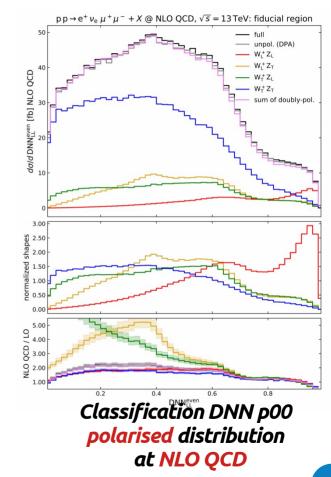
#### Bias study:

- Perform detector level fit on various
   NLO inclusive pseudo-data MC samples
- using a polarisation template set
- Compare to the truth values of the fractions within the pseudo data

Direct polarised generation (Madgraph 2.7.3)

- LO Matrix element + real corrections (0,1 jets)
- → Bias found (10% to 50% on fraction value) using these LO templates

Need for NLO accurate polarisation templates

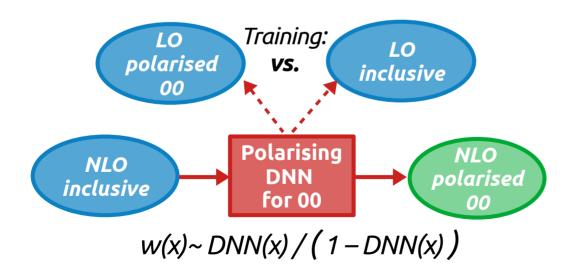

## Reweighting to theory prediction

In collaboration with theorists **A. Denner, G. Pelliccioli :** Theoretical calculations [arXiv:2010.07149] performed

- in the analysis **fiducial phase** space
- NLO QCD polarised → at parton level,
- → Several distributions including the analysis classification DNN score

**Reweight** MG0,1jet polarised to NLO **at parton level** event-by-event with *K*-factor

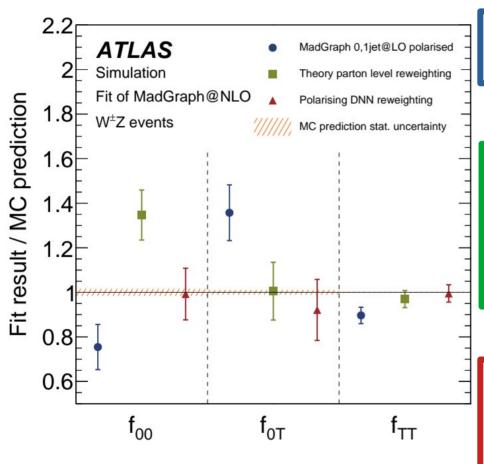
$$K_{\text{MG p.s.}} = \frac{\text{MoCaNLO}_{\text{pol.}}^{parton}}{\text{MadGraph}_{ref,\text{pol.}}^{parton}}$$




## DNN reweighting

Possible to reweight a distribution using a DNN [arXiv:1907.08209]

→ Acts as a multi-dimensionnal reweighting of the input MC sample


4 DNN **trained on polarised Madgraph samples** to discriminate one joint-polarisation states against the inclusive: event-by-event output used in **reweighting** 



```
|y_{\ell,W} - y_Z|
     m_{WZ}
 \cos(\theta_{_{\ell W}}^*)
\cos(\theta^*_{\ell^Z_{ss}})
  \cos(\theta_V)
```

Reweighting DNNs input variables

## Choice of NLO accurate template set

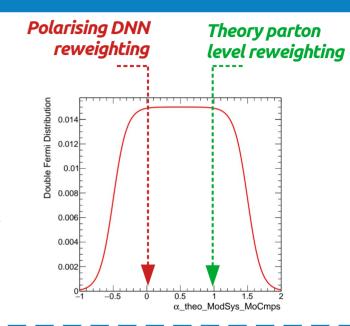


#### Madgraph polarised generation:

- Big bias, from 10% to 40% of the fractions values

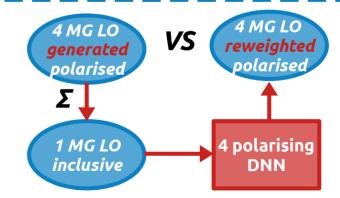
#### Theory parton level reweighting:

- —Still some bias, but generally reduced ~15% of the fractions values
- → Used as the alternative method for modelling uncertainty


#### Polarising DNN reweighting:

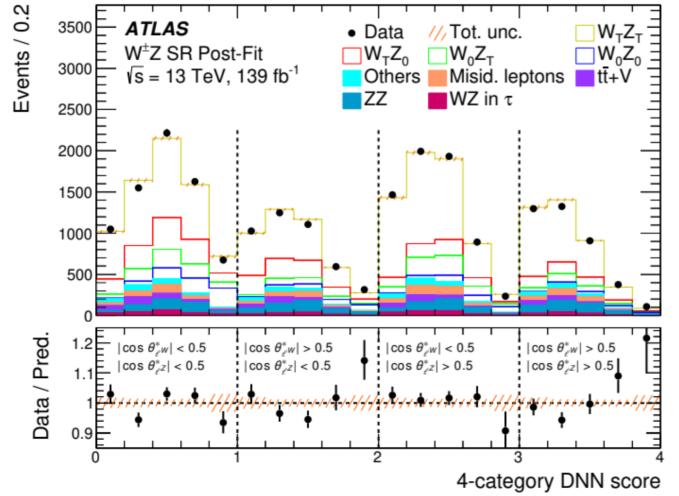
- Found to be the least biased method of all tried (almost no bias)
- → Baseline

## Modelling uncertainties


#### NLO QCD polarisation template set choice uncertainty:

- Theory parton level reweighting =  $2^{nd}$  least biased (over all fractions), from a completely different method
- → Shape uncertainty
- Two point uncertainty, no privileged template
- → Constraint term to limit the range of the nuisance parameter to the two only alternative template sets



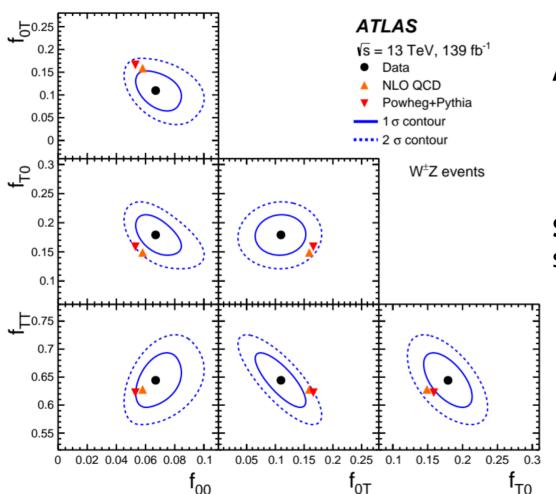

#### Uncertainty on the DNN reweighting method:

 Small non-closure used to extract uncertainty bands



## Joint-polarisation measurement

## Binned Maximum Likelihood Template Fit




Fit parameters of interest are  $\mathbf{f}_{00}$ ,  $\mathbf{f}_{0T}$ ,  $\mathbf{f}_{TT}$  and  $\mathbf{N}_{tot}$  the number of signal event

→ Decouple overall normalisation from polarisation fraction shape effects

$$f_{T0} = 1 - f_{00} - f_{0T} - f_{TT}$$

## Joint-polarisation CL regions



#### All joint-polarisation states observed

- Significance on  $f_{00}$  at **7.1** $\sigma$
- Significance on  $f_{TT}$  and  $f_{TO}$  >5 $\sigma$

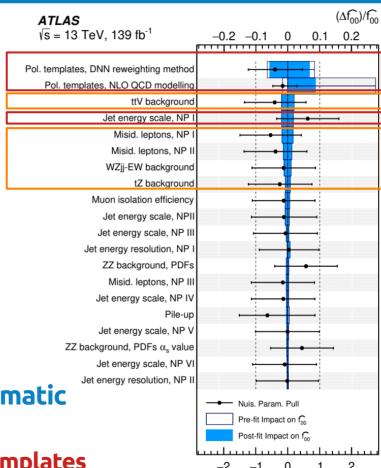
**Strong correlations** between simultaneously extracted fractions

- Confidence Level regions represented for fractions 2 by 2
- No tension with theory: better than 2σ agreement
- $\rightarrow$  1.4  $\sigma$  global agreement with SM

## Per charge of the W boson

| W+ Z & W- Z W+ Z                    |                                     | <b>W-Z</b>                        |
|-------------------------------------|-------------------------------------|-----------------------------------|
| $f_{00} = 0.067 \pm 0.010$          | $f_{00} = 0.072 \pm 0.016$          | $f_{00} = 0.063 \pm 0.016$        |
| $f_{0\mathrm{T}} = 0.110 \pm 0.029$ | $f_{0\mathrm{T}} = 0.119 \pm 0.034$ | $f_{0\mathrm{T}} = 0.11 \pm 0.04$ |
| $f_{\rm T0} = 0.179 \pm 0.023$      | $f_{\rm T0} = 0.153 \pm 0.033$      | $f_{\rm T0} = 0.21 \pm 0.04$      |
| $f_{\rm TT}$ 0.644 ± 0.032          | $f_{\rm TT}$ 0.66 ± 0.04            | $f_{\rm TT}$ 0.62 ± 0.05          |

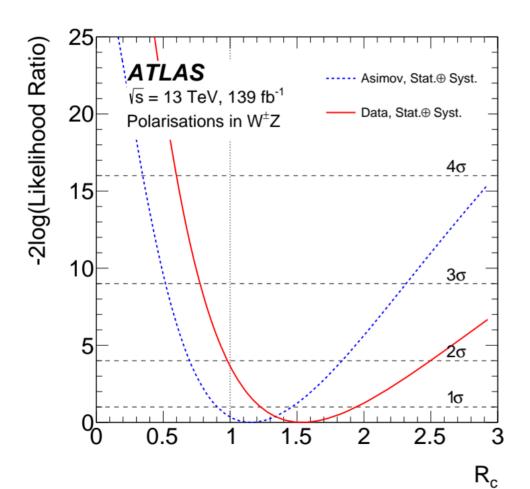
#### Measurement performed as well separating by the W charge


- Significance on f<sub>00</sub> at 6.9σ in W+Z
- Significance on f<sub>∞</sub> at 4.1σ in W-Z

No major difference visible in the charge break down

(baring  $1\sigma$  difference in  $f_{\tau o}$ )

## Uncertainty breakdown


|                                           | $f_{00}$ | $f_{0\mathrm{T}}$ | $f_{\mathrm{T0}}$ | $f_{ m TT}$ |
|-------------------------------------------|----------|-------------------|-------------------|-------------|
| e energy scale and id. efficiency         | 0.00019  | 0.0009            | 0.0012            | 0.0020      |
| $\mu$ energy scale and id. efficiency     | 0.0004   | 0.0004            | 0.0004            | 0.0008      |
| $E_{\mathrm{T}}^{\mathrm{miss}}$ and jets | 0.0017   | 0.0021            | 0.0020            | 0.0023      |
| Pile-up                                   | 0.00031  | 0.00026           | 0.0007            | 0.0010      |
| Misidentified lepton background           | 0.0012   | 0.0026            | 0.0013            | 0.0016      |
| ZZ background                             | 0.0004   | 0.00027           | 0.0005            | 0.0004      |
| Other backgrounds                         | 0.0016   | 0.0026            | 0.0021            | 0.0025      |
| Parton Distribution Function              | 0.00017  | 0.0029            | 0.00014           | 0.0028      |
| QCD scale                                 | 0.00010  | 0.014             | 0.0014            | 0.012       |
| Modelling                                 | 0.005    | 0.007             | 0.005             | 0.008       |
| Total systematic uncertainty              | 0.005    | 0.017             | 0.006             | 0.016       |
| Luminosity                                | 0.00015  | 0.00026           | 0.0004            | 0.00004     |
| Statistical uncertainty                   | 0.007    | 0.016             | 0.019             | 0.019       |
| Total                                     | 0.010    | 0.029             | 0.023             | 0.032       |



Statistical uncertainties at the same level as systematic uncertainties, mainly

- Higher order QCD shape effects on polarisation templates
- Background estimation

## Joint-polarisation CL regions



**Test of independence** of fractions of W and Z by reparametrising:

$$R_{C} = \frac{f_{00}}{f_{0}^{W} f_{0}^{Z}}$$

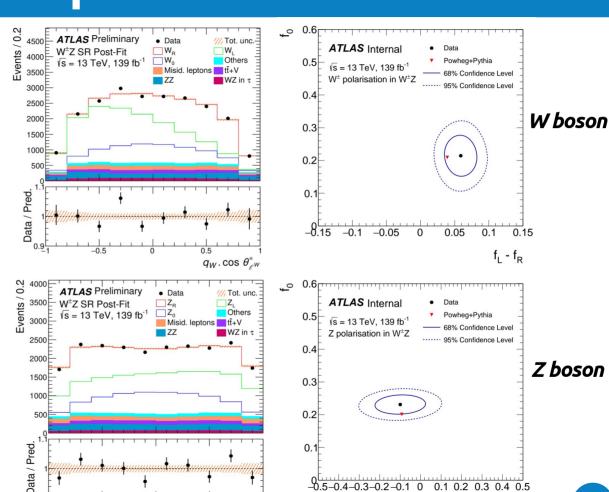
$$f_{0T} = f_{0}^{W} - f_{00},$$

$$f_{T0} = f_{0}^{Z} - f_{00},$$

$$f_{TT} = 1 + f_{00} - f_{0}^{W} - f_{0}^{Z}$$

- If independent, R<sub>c</sub>=1
- Theory predicts R<sub>c</sub> ~ 1.3
- Measurement gives  $R_c = 1.54 \pm 0.35$

Evidence for correlation between the bosons polarisations


## Single boson template fit

## Template fit on data at detector level as for joint-polarisation

- Discriminating variables  $\cos \theta *_{w}$  and  $\cos \theta *_{z}$
- Polarisation templates from analytical reweighting
- → Correct agreement of the fitted templates with data

No tension with theory

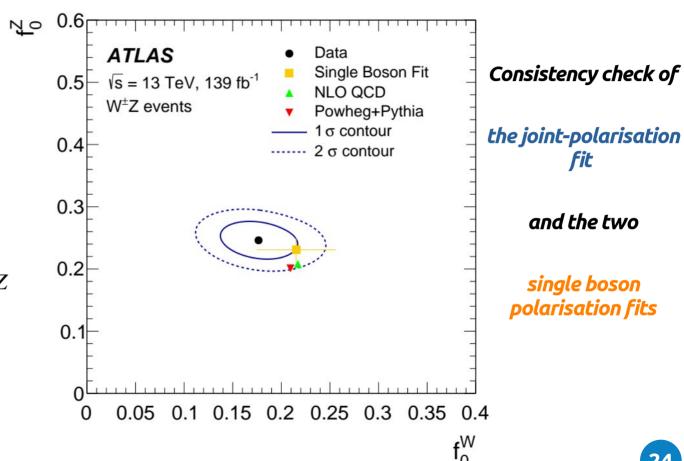
f<sub>0</sub> mesured with 5 sigma in charge break-down



 $\cos \theta^*_{az}$ 

## Consistency with joint-polarisation

#### **Consistency check:**


 $-\mathbf{f}_0^{\mathbf{w}}$  and  $\mathbf{f}_0^{\mathbf{z}}$  measured using reparametrisation in joint-polarisation fit

$$f_{0T} = f_0^W - f_{00},$$
  

$$f_{T0} = f_0^Z - f_{00},$$
  

$$f_{TT} = 1 + f_{00} - f_0^W - f_0^Z$$

→ Agreement within 1σ with the single boson polarisation fit

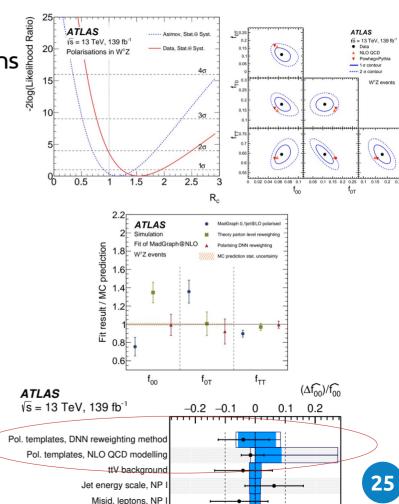


#### CONCLUSION

Need for **JOINT-polarisation** fraction

→ No independence of single boson polarisation fractions

Need to evaluate all fractions simultaneously

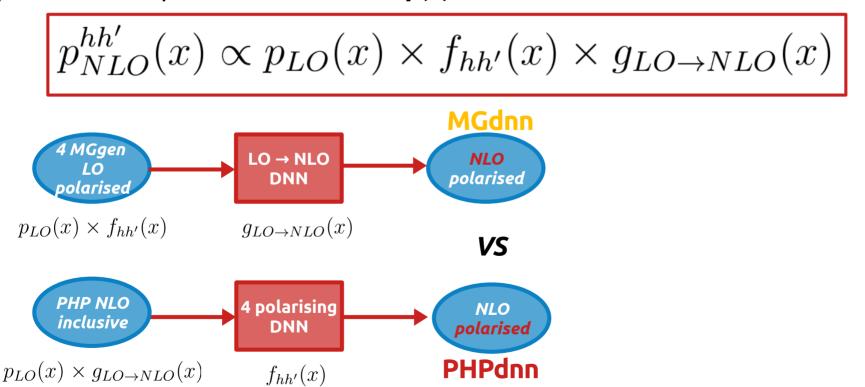

→ Strong correlations between fractions

Classification DNN

Need templates accurate to the **highest possible** order in QCD

- → Leading uncertainty, bias of up to 50% on fractions values
- → Importance of the **modelling uncertainty** design

Polarising DNN reweighting




## Thank you for your attention!

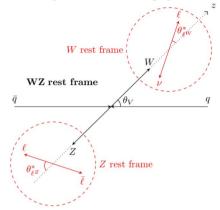


## Validation of factorisation assumption

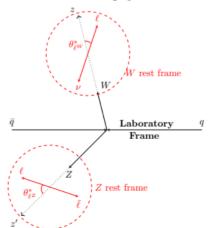
Applying polarising DNN weight to a **NLO inclusive** sample turns it in a **NLO polarised** sample if the distribution p(x) can be factorised:



Two ways to obtain NLO polarised sample: Comparable results, assumption validated


## ATLAS and CMS differences

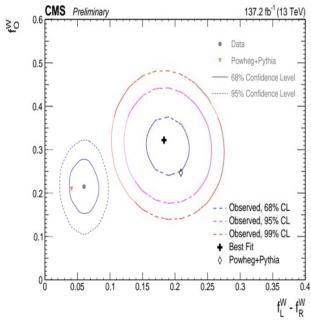
|                            | ATLAS                     | CMS                              |       |
|----------------------------|---------------------------|----------------------------------|-------|
| Total p.s. (MC generation) | $66 < M_Z < 116 \; [GeV]$ | $60 < M_Z < 120 \; [\text{GeV}]$ |       |
| Measurement frame          | Modified Helicity         | Helicity                         |       |
| $p_z^{\nu}$ reconstruction | DNN-based                 | Analytical $(P_W^2 = M_W^2)$     |       |
| Event yield                | 21936                     | 10729 Differ                     |       |
| WZ signal/Backgrounds      | $\approx 4$               | pprox 5                          | lecti |
| Measured value p.s.        | Fiducial                  | Total                            |       |

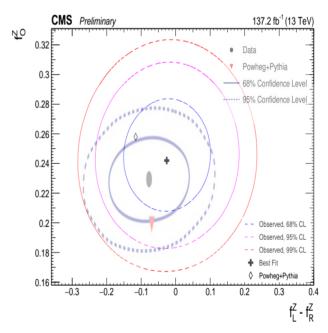

#### ATLAS fiducial phase space

| AI LAS   Iducido                                                                   | piiuse spuce                 |
|------------------------------------------------------------------------------------|------------------------------|
| Variable                                                                           | Fiducial inclusive           |
| Lepton $ \eta $                                                                    | < 2.5                        |
| $p_{\mathrm{T}}$ of $\ell_{\mathrm{Z}},p_{\mathrm{T}}$ of $\ell_{\mathrm{W}}$ [GeV | > 15, > 20                   |
| $m_Z$ range [GeV]                                                                  | $ m_Z - m_Z^{\rm PDG}  < 10$ |
| $m_{\mathrm{T}}^{W}$ [GeV]                                                         | > 30                         |
| $\Delta \hat{R}(\ell_Z^-, \ell_Z^+), \Delta R(\ell_Z, \ell_W)$                     | > 0.2, > 0.3                 |

#### Modified Helicity frame




#### Helicity frame




## ATLAS and CMS comparison

#### CMS published results on full Run 2 data for single boson polarisation fractions

- Not the same frame: central values not comparable
- Uncertainties somewhat smaller for W fractions in ATLAS, similar sensitivity for Z fractions
- Again, no tension with theory





<u>CMS results</u> for W (left) and Z (right) Previously presented CL regions in transparency

#### Previous ATLAS measurement

#### 36 fb<sup>-1</sup> results

|                         | <b>f</b> <sub>o</sub> | $f_L - f_R$        |
|-------------------------|-----------------------|--------------------|
| $W^+$ in $W^+Z$         | $0.26 \pm 0.08$       | $-0.02 \pm 0.04$   |
| $W^-$ in $W^-Z$         | $0.32 \pm 0.09$       | $-0.05 \pm 0.05$   |
| $W^{\pm}$ in $W^{\pm}Z$ | $0.26 \pm 0.06$       | $-0.024 \pm 0.033$ |
| $Z$ in $W^+Z$           | $0.27 \pm 0.05$       | $-0.32 \pm 0.21$   |
| $Z$ in $W^-Z$           | $0.21 \pm 0.06$       | $-0.46 \pm 0.25$   |
| $Z$ in $W^{\pm}Z$       | $0.24 \pm 0.04$       | $-0.39 \pm 0.16$   |



~ x4 data, ~ /2 stat. uncertainties

#### 139 fb<sup>-1</sup> results

|                          | $f_o$             | $f_L - f_R$       |
|--------------------------|-------------------|-------------------|
| $W$ in $W^+Z$            | $0.23 \pm 0.05$   | $0.071 \pm 0.023$ |
| $W$ in $W^-Z$            | $0.19 \pm 0.05$   | $0.026 \pm 0.027$ |
| $W \text{ in } W^{\pm}Z$ | $0.22 \pm 0.04$   | $0.059 \pm 0.016$ |
| $Z$ in $W^+Z$            | $0.223 \pm 0.025$ | $-0.20 \pm 0.10$  |
| $Z$ in $W^-Z$            | $0.240 \pm 0.029$ | $0.10 \pm 0.13$   |
| $Z \text{ in } W^{\pm}Z$ | $0.231 \pm 0.019$ | $-0.10 \pm 0.08$  |

#### Compared to 36 fb<sup>-1</sup> single boson polarisation measurement: [arXiv:1902.05759]

- Central value not comparable for change of definition of cos0\*
- Uncertainties roughly divided by 2
- → Lower improvement for f<sub>o</sub><sup>w</sup> who is not statistically dominated

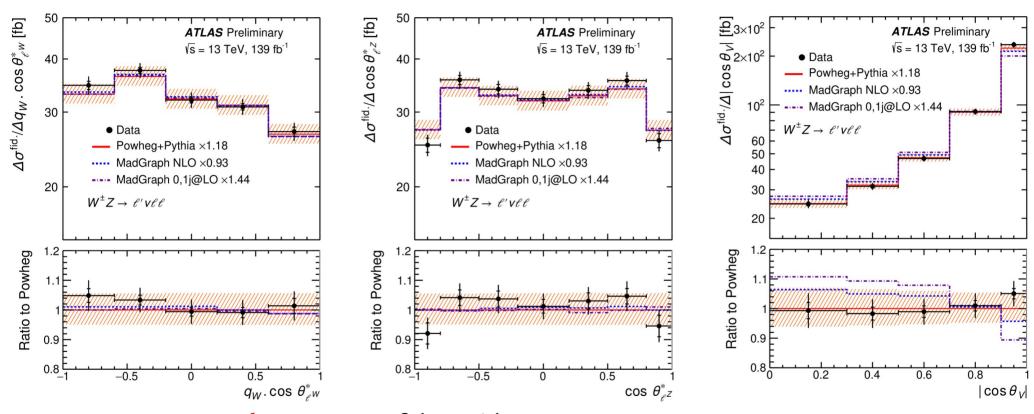
## Unfolded distributions

**Cross section of inclusive WZ** production in the fiducial phase space with leptonic decay:

 $\rightarrow$  Obtained from  $N_{tot}$  parameter of the fit, at the **Born level** 

$$\sigma^{\rm fid.}_{W^{\pm}Z \to \ell^{'} \nu \ell \ell} = 64.6 \pm 2.1 \ {
m fb}$$
 **VS** NNLO QCD SM prediction =  $64.0^{+1.5}_{-1.3} \ {
m fb}$  With MATRIX [arXiv:1703.09065]

#### →Perfect agreement, similar precision


Iterative bayesian unfolding of **polarisation sensitive variables**:

$$\rightarrow \cos\theta_{W}^{*}, \cos\theta_{Z}^{*}, |\cos\theta_{V}|$$

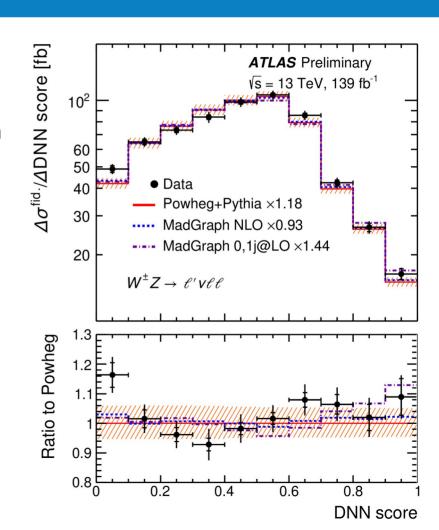
Compared to Born level **predictions** from

- NLO inclusive MC sample: Powheg+Pythia and MadGraph5\_aMC@NLO+Pythia
- Sum of LO polarised MC MG0,1jet samples
- → All rescaled to integral NNLO QCD cross section prediction

## Unfolded distributions



- Good agreement of data with NLO MC
- MG0,1jet at LO fails with |cosV| because it has strong NLO dependence
   (Denner&Pelliccioli theoretical calculations)


## Unfolding the DNN

#### Classification DNN to be made public

- -Classification DNN trained at detector level on Madgraph polarised samples
- Uses low level variables, not p<sub>z</sub> related, to
   be independent from the method chosen for its reconstruction
- → Used by theorist Denner&Pelliccioli to compute particle level predictions

#### **Unfolded differential cross section**

→ Particle level DNN score feeds the same DNN with particle level variables

