Laser-TCT with Allpix²

Overview of the allpix::DepositionLaserModule and some comparisons with experimental data.

Daniil Rastorguev 4th Allpix Squared User Workshop 22.05.2023

Transient Current Technique (TCT) basics

Signal formation principles and sensor features

Bulk spatial features that are *encoded* in the pulse shape:

- Electric field
- Weighting potential
- Depletion region

Application domains:

- Radiation-damaged sensors
- Sensors with complex structure

The experiment:

- inject charge in a <u>controlled</u> way
- study transient pulses

How to simulate laser charge injection with Allpix²?

Motivation

A dedicated event generator for energy deposition with pulsed lasers

Allpix² offers an extensive toolkit for **transient current simulations**, but there was no option to simulate *charge injection with a laser*

- [DepositionGeant4] with G4Gamma?
- **[DepositionGeant4]** with G40pticalPhoton?
- External script and [DepositionReader]?
- \rightarrow We have developed a new module for that!

allpix::DepositionLaserModule

A dedicated event generator for energy deposition with pulsed lasers

→ The module is available in Allpix² since v2.4.0, and new features keep arriving! https://gitlab.cern.ch/allpix-squared/allpix-squared/-/tree/master/src/modules/DepositionLaser

Features:

- No dependency on Geant4
- Follows modular approach of Allpix²
- Full compatibility with Allpix² geometry (passive objects, multi-detector setups)
- Follows sustainable development philosophy of Allpix²

allpix::DepositionLaserModule

Simulation principle

Simulation features:

- Laser pulse is modelled as a set of **individual photons**, each considered a *straight line*
- Intensity distribution reproduces a gaussian beam
- Adjustable pulse duration
- Experimental **lookup table** with absorption and refraction coefficients for different wavelengths

0.06

mm

Š

-0.0

0.04

0.02

x, mm

0.06

DepositionLaserModule showcases

Spatial distributions of laser-injected charge: 500 µm thick silicon plate as a target

1064 nm (IR) converging beam:

- uniform distribution along the whole bulk
- converging-diverging beam shape

DepositionLaserModule showcases

Spatial distributions of laser-injected charge: 500 µm thick silicon plate as a target

1064 nm (IR) converging beam:

- uniform distribution along the whole bulk
- converging-diverging beam shape

660 nm (red) beam + metal strips on surface:

- absorption in a thin surface layer
- light partially blocked by opaque strips

Example simulation pipeline

ElectricFieldReader & WeightingPotentialReader define e.field and w.potential distributions

DepositionLaser

generate charge carriers, deposited in the bulk

TransientPropagation

track individual carriers through the bulk and calculate induced currents (Shockley-Ramo)

PulseTransfer

accumulate induced currents and store data

Pulse post-processing (external)

account for the amplifier effects

TCT experiments: Data/MC comparisons

Laser TCT experiments

A flexible testbench for sensor R&D

Pulsed lasers are a common tool for charge injection:

- micrometer aim precision
- high repeatability
- tunable intensity

Near infrared pen.depth O(1 mm) = *m.i.p passage*

Experimental setup at DESY

A few more components to make a complete setup:

- Focusing optics
- Positioners
- High-bandwidth amplification and readout

Red (640 nm) and IR (1064 nm) lasers:

- stable beam radius of **12 μm** at focus
- pulse duration of approx. **2 ns**
- intensity fluctuations <2%

Experimental dataset

for simulation comparisons/validation

A test strip structure for ATLAS12 sensors

- **n**⁺-**on**-**p** type (electron collecting)
- 310 µm thickness
- 74.5 µm pitch
- Depletion at ~360V

View of the sensor under test Laser spot shown schematically with a red circle

- Laser is focused in a ~100 μm spot and aimed at a strip, connected to readout
- Output signals are amplified with a wide-band amp
- The readout is synchronized with the laser and records and averages signals, induced on that strip
- Bias voltage scans are taken with both **red** and **IR** lasers

Recorded signals scan over bias voltage, IR laser

Induced pulse comparison

Infrared laser

Characteristic signal features are reproduced with the simulation:

- **Overall shape** → electron and hole contributions
- Amplitude vs bias → depletion characteristics
- Width → laser pulse properties

Induced pulse comparison

Red laser

For the **red** laser, signal formation is happening in a *thin surface layer* thus it is highly prone to **border effects**

→ more accurate detector model required

Conclusions

- The **deposition generator** for laser-TCT simulations is complete and functional
- With it, Allpix² is capable of reproducing sensor response in different scenarios of TCT experiments
 - Certain scenarios show good match to experimental data
 - However, **further tuning** of simulation is required for better precision and to cover wider range of use cases

That's it! Thank you for attention!