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Silicon Carbide for HEP
 4H-SiC is a wide bandgap semiconductor
 Already investigated for HEP in the 2000s, 

renewed interest in SiC due to availability of 
high quality wafers from power electronics 
industry

 Very low leakage currents ( < 1 pA), high 
breakdown field, insensitive to visible light

 Potentially higher radiation hardness 
(displacement energy)

Advantages and disadvantages of 4H-SiC to Si
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4H-SiC Samples
 4H-SiC p-in-n Diodes from Run 13575 of CNM Barcelona [2]
 3 x 3 mm² active area, 50 μm epi
 Full depletion voltage : 325V, Cdet = 20 pF
 Ongoing characterization [3,4,5,6,7]

4H-SiC sample on UCSC LGAD board, with wire-bondsCross-section of 4SiC samples from CNM’s run 13575
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Aim and Workflow
 Single particle detection, no spatial resolution at the moment
 Verify 4H-SiC parameters, combine TCAD and AllPix² to reproduce measurements
 With a verified model, use AllPix² to predict performance for testbeams

Analysis Software 
https://gitlab.com/dd-hephy/HiBPM/RS_DRS4_run_analysis

Simulation Workflow

4H-SiC Material Parameters MeasurementsSimulated Waveforms

https://gitlab.com/dd-hephy/HiBPM/RS_DRS4_run_analysis
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AllPix² Modules and Input

Ionization energy, Fano Factor

TCAD

Mobility Models

Front-end transfer function

DepositionGeant4 DepositionPointCharge

ElectricFieldReader WeightingPotentialReader

TransientPropagation

PulseTransfer

CSADigitizer
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 Quite a large spread in literature values for εSiC and FSiC

 Verify literature values using a comparison between  Si and SiC detectors
 Tri-Alpha source (Pu²³⁹, Am²⁴¹, Cm²⁴⁴) in rough vacuum (10⁻¹ mBar)
 Spectroscopic CSA (Cividec Cx-L, 1.2 μs shaping time)

Vacuum Setup in HEPHY clean room
Si (left) and SiC sensors (right) sensors

Ionization Energy + Fano Factor I
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Signal [V] 

Ionization Energy + Fano Factor II
 Need to take into account ~ 1 μm of 

passivation and metalization on top of 
sensors using a Geant4 simulation

 Good agreement to recent literature values
 Results are very close to already 

implemented values in AllPix²
(ε = 7.6 eV, F = 0.1)

PRELIMINARY

PRELIMINARY

εSiC = 7.7 ± 0.1 eV

FSiC = 0.10 ± 0.01 Comparison between Si and SiC spectra used to compute the 
ionization energy and Fano factor for 4H-SiC
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Electric Field and Weighting Potential

In practice, our samples are not “ideal” diodes
 Doping profile extracted from 1/C² measurements
 Deviation from linear electric field, need TCAD

 
Device simulation in Synopsys Sentaurus:
 Inadequate existing parameter files for 4H-SiC, 

extensive literature review was required
 Validation is still ongoing

 
 Export to DF-ISE, import into AllPix² using 
mesh_converter

Pad
Charge 
collection 
ring

Guard 
Rings

Particle
Trajectory
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 Low Field Mobility : Masetti model [8]

Doping profiles assumed constant in AllPix²
 

 High Field Mobility: Extended-Canali model [9, 10]

 
 Provide parameters to AllPix² after validation

 
 Anistropy : 

 ~20% difference per axis, not the same for e and h [11] 
 Anisotropic parameters currently not possible in AllPix²
 Anisotropy can be neglected for our purposes 

Mobility Models
For our detector:
μdop,e = 991 cm²/V/s
μdop,h = 145 cm²/V/s

4H-SiC hexagonal crystal structure
[10.1007/s10825-016-0942-y]

https://link.springer.com/article/10.1007/s10825-016-0942-y
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Simplifed Amplifier Model

Front-end Electronics
 UCSC LGAD readout board  [12], high bandwidth (2 GHz) transimpedance-amplifier 

(TIA), transimpedance of 470 Ω
 Transimpedance amplifier : Q = ∫ I dt

 
Simplified Model : Two low-pass filters
 Detector capacitance and input impedance:

τdet = Cdet Rin

 Bandwidth fc of TIA:
τTIA = 1 / (2πfc)

 Analytically the same as 

UCSC LGAD board at a beam test
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CSADigitizer Module
 Access waveforms using PixelPulse object 

(introduced in AllPix² 3.0, thanks!)
 

Modifications : 
 Added padding before signal (some ns)
 Planned: Possibility to read impulse 

response from text file (more flexibility, 
utilize S21 parameters measured by a VNA)

 
 Shape of simulated waveforms agrees well 

with measurements
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Simulation and Verification
 UV light (λ = 370 nm) needed to overcome bandgap of SiC (3.23 eV)
 Low jitter (< 3ps) electrical trigger available from laser controller [13]
 TCT allows for large signals and noise reduction by averaging
 Large signals required due to small epi thickness

(MIP : 57 eh/μm · 50 μm ≈ 2.9 ke⁻, ENC of front-end : 6.2 ke⁻)
 See also [3]

 
First simulations and
measurements presented here: 
 Charge collection efficiency (CCE)

vs bias voltage
 Time Resolution 
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Charge Collection Efficiency CCE
 Uniform charge deposition assumed for laser in AllPix² (α ≈ 42 cm⁻¹ [14])

 
 OK agreement between measured and simulated CCE (deviation < 5%)
 Increasing discrepancies

at lower bias voltages
 

 Amplifier is non-ideal, a part of
the signal is lost, esp. at low V 

 Check RMS noise, add doping
dependence for mobility
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Time Resolution

 
 In general: Want to determine jitter σt  on 

time stamps from detector 

 
 Using TCT, only the jitter term is relevant

    σJitter ≈ trise / SNR 

UV-TCT Pad geometry Fast oscilloscope (40 GSa/s), 
interpolation

 Large saturation velocities of SiC make it attractive for timing
 Can verify mobility models using time resolution measurements

(Time walk mitigated 
by using CFD)
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 Measurements and 
AllPix² follow a
1 / SNR relation

 Independent of bias 
voltage  t→ rise constant
  bandwidth limitation →
of electronics due to 
large sensor capacitance 
(20 pF)

 Disagreement at lower 
SNR, likely to due to 
issues in data analysis

Preliminary Time Resolution Results

More work 
required!
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Future Plans I : TCAD + Radiation Damage
 TCAD models still need to be validated
 Ongoing 4H-SiC project with an Austrian TCAD company Global TCAD solutions [14] 
 Cross-check TCAD and AllPix² using HeavyIon simulations

 Radiation Damage
 Essential for future high-luminosity

colliders, interesting for RD50 collaboration
 Measured CCE for neutron-irradiated

samples [3,4,5]
 Try to reproduce CCE results in AllPix²
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Future Plans II : LGADs
 SiC suffers from limitations on epi thickness and resistivity

 Use internal charge multiplication, Low Gain Avalanche Didoes (LGAD)→
 

 Attractive properties of SiC:
 Multiplication of holes (αe < αh) instead of

electrons (αe > αh for Si)
 Higher saturation velocity,

especially interesting for timing
 

 Work on SiC LGADs is ongoing, see [17] and [6]
 Need to compare and verify TCAD and AllPix² impact ionization models
 Use AllPix² as a simulation tool to predict perfomance

Idealized SiC LGAD structure [16]
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BACKUP
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TCT Geometry
 Due to metalization on 

top of sample, we can 
only inject at edge of 
pad (5 μm gap)

Pad
Charge collection 
ring

Guard Rings

Laser Beam
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Material Parameters

Comparison of material properties between silicon, silicon carbide and diamond [1]
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Electronics Transfer Function : Simulation
 Spice simulations using QUCS
 HF simulations not trivial (non-ideal components, wire-bonds, PCB transmission lines)
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Electronics Transfer Function : Measurement
Different Measurement methods:

 Vector Network Analyzer (VNA) (sine sweep)
 Step response using R&S RTP-B7 Pulse Source (22 ps rise time)

Need to take into account detector capacitance (~2-3 pF to 20 pF)
 Large SiC detector capacitance of 20 pF reduces bandwidth

Measured AC gain vs. 
different simulated 

detector capacitances

S21 measurement using VNA

“Detector Dummy” using SMA Connector
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