

Time Resolution Simulations of 4H-SiC PiN Detectors

Paul Sommerer, <u>Andreas Gsponer</u>, Philipp Gaggl, Matthias Knopf, Jürgen Maier, Richard Thalmeier, Simon Emanuel Waid and Thomas Bergauer <u>andreas.gsponer@oeaw.ac.at</u>

Institute for High Energy Physics of the Austrian Academy of Sciences

4th AllPix² Workshop 23.5.2023

Silicon Carbide for HEP

- 4H-SiC is a wide bandgap semiconductor
- Already investigated for HEP in the 2000s, renewed interest in SiC due to availability of high quality wafers from power electronics industry
- Very low leakage currents (< 1 pA), high breakdown field, insensitive to visible light
- Potentially higher radiation hardness (displacement energy)

Advantages and disadvantages of 4H-SiC to Si

CADEMY OF

4H-SiC Samples

- 4H-SiC p-in-n Diodes from Run 13575 of CNM Barcelona [2]
- 3 x 3 mm² active area, 50 µm epi
- Full depletion voltage : 325V, C_{det} = 20 pF
- Ongoing characterization [3,4,5,6,7]

Cross-section of 4SiC samples from CNM's run 13575

4H-SiC sample on UCSC LGAD board, with wire-bonds

AUSTRIAN

SCIENCES

Aim and Workflow

- Single particle detection, no spatial resolution at the moment
- Verify 4H-SiC parameters, combine TCAD and AllPix² to reproduce measurements
- With a verified model, use AllPix² to predict performance for testbeams

Simulation Workflow

AUSTRIAN

AllPix² Modules and Input

Ionization Energy + Fano Factor I

- Quite a large spread in literature values for ϵ_{SiC} and F_{SiC}
- Verify literature values using a comparison between Si and SiC detectors
- Tri-Alpha source (Pu²³⁹, Am²⁴¹, Cm²⁴⁴) in rough vacuum (10⁻¹ mBar)
- Spectroscopic CSA (Cividec Cx-L, 1.2 µs shaping time)

Si (left) and SiC sensors (right) sensors

Vacuum Setup in HEPHY clean room

4th AllPix² Workshop

Andreas Gsponer

Ionization Energy + Fano Factor II

- Need to take into account ~ 1 µm of passivation and metalization on top of sensors using a Geant4 simulation
- Good agreement to recent literature values
- Results are very close to already implemented values in AllPix² (ε = 7.6 eV, F = 0.1)

 $\epsilon_{SiC} = 7.7 \pm 0.1 \ eV$ $\label{eq:FSiC} \begin{tabular}{l} $\mathsf{PRELIMINARY}$ \\ $F_{SiC} = 0.10 \pm 0.01$ \end{tabular}$

Comparison between Si and SiC spectra used to compute the ionization energy and Fano factor for 4H-SiC

CADEMY OF

Electric Field and Weighting Potential

In practice, our samples are not "ideal" diodes

- Doping profile extracted from 1/C² measurements
- Deviation from linear electric field, need TCAD

Device simulation in Synopsys Sentaurus:

- Inadequate existing parameter files for 4H-SiC, extensive literature review was required
- Validation is still ongoing
- Export to DF-ISE, import into AllPix² using *mesh_converter*

CADEMY OF

Mobility Models

• Low Field Mobility : Masetti model [8]

$$\mu_{dop} = \mu_{min1} \cdot \exp\left(-\frac{P_C}{N_{A,0} + N_{D,0}}\right) + \frac{\mu_{const} - \mu_{min2}}{1 + \left(\frac{N_{A,0} + N_{D,0}}{C_r}\right)^{\alpha}} - \frac{\mu_1}{1 + \left(\frac{C_s}{N_{A,0} + N_{D,0}}\right)^{\beta}}$$

Doping profiles assumed constant in AllPix²

• High Field Mobility: Extended-Canali model [9, 10]

 $\mu(E) = rac{v_m}{E_c} rac{1}{\left(1 + (E/E_c)^eta
ight)^{1/eta}}$

- Provide parameters to AllPix² after validation
- Anistropy :
 - ~20% difference per axis, not the same for e and h [11]
 - Anisotropic parameters currently not possible in AllPix²
 - Anisotropy can be neglected for our purposes

4th AllPix² Workshop

For our detector: $\mu_{dop,e} = 991 \text{ cm}^2/\text{V/s}$ $\mu_{dop,h} = 145 \text{ cm}^2/\text{V/s}$

⁴H-SiC hexagonal crystal structure [10.1007/s10825-016-0942-y]

Front-end Electronics

- UCSC LGAD readout board [12], high bandwidth (2 GHz) transimpedance-amplifier (TIA), transimpedance of 470 Ω
- Transimpedance amplifier : $Q = \int I dt$

Simplified Model : Two low-pass filters

- Detector capacitance and input impedance: $\tau_{det} = C_{det} R_{in}$
- Bandwidth f_c of TIA: $\tau_{TIA} = 1 / (2\pi f_c)$
- Analytically the same as

Simplifed Amplifier Model

CSADigitizer Module

 Access waveforms using *PixelPulse* object (introduced in AllPix² 3.0, thanks!)

Modifications :

ADEMY OF

- Added padding before signal (some ns)
- Planned: Possibility to read impulse response from text file (more flexibility, utilize S₂₁ parameters measured by a VNA)
- Shape of simulated waveforms agrees well with measurements

Simulation and Verification

- UV light (λ = 370 nm) needed to overcome bandgap of SiC (3.23 eV)
- Low jitter (< 3ps) electrical trigger available from laser controller [13]
- TCT allows for large signals and noise reduction by averaging
- Large signals required due to small epi thickness (MIP : 57 eh/μm · 50 μm ≈ 2.9 ke⁻, ENC of front-end : 6.2 ke⁻)
- See also [3]

CADEMY OF

First simulations and measurements presented here:

- Charge collection efficiency (CCE) vs bias voltage
- Time Resolution

4th AllPix² Workshop

13

Charge Collection Efficiency CCE

- Uniform charge deposition assumed for laser in AllPix² ($\alpha \approx 42 \text{ cm}^{-1}$ [14])
- OK agreement between measured and simulated CCE (deviation < 5%)
- Increasing discrepancies at lower bias voltages

AUSTRIAN

- Amplifier is non-ideal, a part of the signal is lost, esp. at low V
- Check RMS noise, add doping dependence for mobility

Time Resolution

- Large saturation velocities of SiC make it attractive for timing
- Can verify mobility models using time resolution measurements

AUSTRIAN

Preliminary Time Resolution Results

 Measurements and AllPix² follow a 1 / SNR relation

AUSTRIAN

- Independent of bias voltage → t_{rise} constant → bandwidth limitation of electronics due to large sensor capacitance (20 pF)
- Disagreement at lower SNR, likely to due to issues in data analysis

AUSTRIAN

Future Plans I : TCAD + Radiation Damage

- TCAD models still need to be validated
- Ongoing 4H-SiC project with an Austrian TCAD company Global TCAD solutions [14]
- Cross-check TCAD and AllPix² using *HeavyIon* simulations
- Radiation Damage
 - Essential for future high-luminosity colliders, interesting for RD50 collaboration
 - Measured CCE for neutron-irradiated samples [3,4,5]
 - Try to reproduce CCE results in AllPix²

AUSTRIAN ACADEMY OF SCIENCES

Future Plans II : LGADs

- SiC suffers from limitations on epi thickness and resistivity
 → Use internal charge multiplication, Low Gain Avalanche Didoes (LGAD)
- Attractive properties of SiC:
 - Multiplication of holes ($\alpha_e < \alpha_h$) instead of electrons ($\alpha_e > \alpha_h$ for Si)
 - Higher saturation velocity, especially interesting for timing

Idealized SiC LGAD structure [16]

- Work on SiC LGADs is ongoing, see [17] and [6]
- Need to compare and verify TCAD and AllPix² impact ionization models
- Use AllPix² as a simulation tool to predict perfomance

References

[1] : M. De Napoli, "SiC detectors: A review on the use of silicon carbide as radiation detection material," Front. Phys., vol. 10, p. 898833, Oct. 2022, doi: 10.3389/fphy.2022.898833.

[2] : Rafí et al. Electron, Neutron, and Proton Irradiation Effects on SiC Radiation Detectors. IEEE TRANSACTIONS ON NUCLEAR SCIENCE 67, 9 (2020).

[3] : Gaggl et al.,, Charge collection efficiency study on neutron-irradiated planar silicon carbide diodes via UV-TCT, 10.1016/j.nima.2022.167218

[4] : Gaggl et al., Performance of neutron-irradiated 4H-silicon carbide diodes subjected to alpha radiation, J. Inst.18, C01042 (2023)

[5] : Gsponer et al., Measurements and Simulations of High Rate 4H-SiC Particle Detectors, 40th RD50 Workshop on Radiation Hard Semiconductor, Geneva (2022)

[6] : T. Bergauer, Silicon Carbide LGAD RD50 common project, 41st RD50 Workshop on Radiation Hard Semiconductor, Sevilla (2022)

[7] : Christanell et al., 4H-silicon carbide as particle detector for high-intensity ion beams. J. Inst. 17, C01060 (2022).

[8] : Stefanakis, et al.. Tcad models of the temperature and doping dependence of the bandgap and low field carrier mobility in 4h-sic. Microelectronic engineering, 116:65–71, 2014. ISSN 0167-9317.

[9] : Kimoto, et. al.. Fundamentals of Silicon Carbide Technology: Growth, Characterization, Devices and Applications. Wiley – IEEE. Wiley, New York, 1 edition, 2014. ISBN 9781118313527.

[10] : I.A Khan and J.A Cooper. Measurement of high-field electron transport in silicon carbide. IEEE transactions on electron devices, 47(2):269–273, 2000

[11] : Nilsson et al. Monte carlo simulation of electron transport in 4h-sic using a two-band model with multiple minima. Journal of applied physics, 80(6):3365–3369, 1996.

- [12] : https://twiki.cern.ch/twiki/bin/view/Main/UcscSingleChannel
- [13] : https://www.nktphotonics.com/products/pulsed-diode-lasers/pilas/

[14] : Sridhara, S. G. et al., Absorption coefficient of 4H silicon carbide from 3900 to 3250 Å. Journal of Applied Physics 84, 2963–2964 (1998).

- [15] : https://www.globaltcad.com/
- [16] : Barletta et al., Fast Timing With Silicon Carbide Low Gain Avalanche Detectors, Snowmass 2021, arXiv:2203.08554
- [17] : Yang et al., Simulation of the 4H-SiC Low Gain Avalanche Diode, arXiv:2206.10191

4th AllPix² Workshop

Andreas Gsponer

AUSTRIAN ACADEMY OF

SCIENCES

BACKUP

TCT Geometry

 Due to metalization on top of sample, we can only inject at edge of pad (5 µm gap)

AUSTRIAN ACADEMY OF SCIENCES

AUSTRIAN ACADEMY OF SCIENCES

Material Parameters

	Si	4H-SiC	Diamond
Atomic number[Z]	14	14/6	6
Density [g/cm ³]	2.33	3.22	3.51
Relative permittivity – ϵ_r	11.9	9.7	5.7
Energy gap [eV]	1.12	3.23	5.5
e – h pair creation energy [eV]	3.6	7.6-8.4	13
Displacement Energy [eV]	13–15	30-40	43
Breakdown electric field [V/cm]	$3 \cdot 10^{5}$	$3-4 \cdot 10^{6}$	107
Electrons mobility $\mu_e \ [cm^2/Vs]$	1450	800	1800
Holes mobility $\mu_h \ [cm^2/Vs]$	450	115	1200
Saturated electron drift velocity [cm/s]	$0.8 \cdot 10^7$	$2 \cdot 10^7$	$2.2 \cdot 10^{7}$
Thermal conductivity [W/Kcm]	1.5	4.9	24–25

Comparison of material properties between silicon, silicon carbide and diamond [1]

Electronics Transfer Function : Simulation

- Spice simulations using QUCS
- HF simulations not trivial (non-ideal components, wire-bonds, PCB transmission lines)

4th AllPix² Workshop

Andreas Gsponer

Electronics Transfer Function : Measurement

Different Measurement methods:

- Vector Network Analyzer (VNA) (sine sweep)
- Step response using R&S RTP-B7 Pulse Source (22 ps rise time)

Need to take into account detector capacitance (~2-3 pF to 20 pF)

• Large SiC detector capacitance of 20 pF reduces bandwidth

Measured AC gain vs. different simulated detector capacitances

"Detector Dummy" using SMA Connector

 S_{21} measurement using VNA

4th AllPix² Workshop