Friedrich-Alexander-Universität Erlangen-Nürnberg

Deconvolution of Spectra of High-Flux Mixed Radiation Fields with Dosepix

Florian Beißer, Dennis Haag, Leonie Ullmann, and Thilo Michel Hamburg, 22.05.2023

- FLASH Therapy
- Laser induced plasma shocks
- The Dosepix Detector
- Existing Few-Channel-Spectrometer with TLDs
- Dosepix Spectrometer
- First Results
- Conclusion and Outlook

FLASH Radiotherapy

- High dose rates (several Gy/s)
- Conventional radiotherapy: maximal 0.4 Gy/s
- Reduction of normal tissue complication (FLASH effect)
- Tumor control similar to conventional radiotherapy
- Larger therapeutic window

Schüller et al.: "The European Joint Research Project UHDpulse – Metrology for advanced radiotherapy using particle beams with ultra-high pulse dose rates" In: Physica Medica 80 (2020), S. 134–150

3

Laser Induced Plasma Shocks

- Shots of very-high intensity laser into material
- Production of plasma
- Emission of mixed particle signals (mostly electrons & photons)
- Similar to solar processes
- Exact combination unclear
- No active device existing ٠

F. Ronneberger, IOQ Jena

The Dosepix Detektor

-Hybrid pixelated x-ray detektor

- Developed by collaboration of Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) and CERN
- $-300\ \mu\text{m}$ thick p-in-n doped silicon sensor layer
- -16×16 quadratic pixels
 - $-Pixel pitch: 220 \ \mu m$
 - -192 large pixels (edge length 220 $\mu m)$
 - -64 small pixels (edge length 55 μ m)
 - -Area: 3.52 mm \times 3.52 mm
- -Energy threshold: \approx 10 keV

Quelle: Dennis Haag: Active personal dosimetry with the hybrid pixelated DOSEPIX detector, 2018

Quelle: Thomas Gabor: Simulationen und Experimente zur Anwendung eines neuartigen spektroskopischen Pixeldetektors in der Personendosimetrie, 2012

- -Hardware histogramming: Sorting *ToT*-events pixelwisely into 16 energy bins
- -Energy thresholds: (12, 15, 20, 25, 30, 35, 40, 50, 60, 70, 80, 90, 100, 110, 130, 150) keV
- -Exemplary spectrum of $^{241}_{95}$ Am + Mo-XRF target

Existing Few-Channel Spectrometer

- -Device for spectral reconstruction
- -Usability in mixed photon and electron fields
- -Optimised for short high-dose pulses (Laser-

induced plasmas)

- -Deconvolution not perfect
- -Laborious read-out

Abbildung 4-3: Aufbau des Wenig-Kanal-Spektrometers. Abmessungen: Länge: 21 cm;

Durchmesser: 7 cm; Gewicht: 7 kg. Grafik: B. Pullner, PTB Braunschweig, FL 6.31.

- -Solving equation: $D_i^{\text{mess}} \stackrel{!}{\doteq} D_i^{\text{rech}} = \sum_{j=1}^M R_{i,j}^{\text{El}} \cdot \Phi_j^{\text{El}} + \sum_{j=1}^M R_{i,j}^{\text{Ph}} \cdot \Phi_j^{\text{Ph}}$
- $-D_i^{\text{mess}}$ Dose in layer *i*, $R_{i,j}^{[\cdot]}$ Response in layer *i* for particle from energy bin *j*, $\Phi_j^{[\cdot]}$ fluence of energy bin *j*
- -Energy bins: $E_{j+1} = E_j + \Delta E_j$ mit $E_{j+1} = 1,1885 \times E_j$, j=1....60, $E_1 = 3,0$ keV

 $-\text{Pre-given information: } \Phi_j^{\text{El}} = a_1^{\text{El}} (k_{\text{B}} T_1)^{-\frac{3}{2}} \sqrt{E_j^{\text{El}}} e^{-\frac{E_j^{\text{El}}}{k_{\text{B}} T_1}} + a_2^{\text{El}} (k_{\text{B}} T_2)^{-\frac{3}{2}} \sqrt{E_j^{\text{El}}} e^{-\frac{E_j^{\text{El}}}{k_{\text{B}} T_2}}$

$$-\Phi_j^{\text{Ph}} = a_1^{\text{Ph}} e^{-\frac{E_j^{\text{Ph}}}{k_B T_1}} + a_2^{\text{Ph}} e^{-\frac{E_j^{\text{Ph}}}{k_B T_2}} \rightarrow 8 \text{ parameters for deconvolution}$$

Dosepix Spectrometer General Idea

- -10 Dosepix detectors in line
- Filters with varying material and thicknesses
- -Combined Read-out
- -Currently: Allpix-Squared Simulation

Video by Thomas Kurin

Simulated Setup

- Filter combinations inspired by TLD-spectrometer
- 1 cm lead surrounding on five sides
- Total length: 20 cm
- Monoenergetic photons from 15 keV to 1.5 MeV
- Monoenergetic electrons from 120 keV to 20 MeV
- N-series radiation qualities acc. to ISO 4037-1

- Detector output binned like Dosi-Mode data
- Energy deposition spectra from all detectors clinged together
- Currently: Photons and electrons separately
- Planned steps: •
 - Combination of particles
 - Pile-up inclusion ullet
 - Machine-learning based method lacksquare

First Results

Transmission

- Transmission behaviour for photons and electrons
- All detector layers required for aimed range of reconstructable energies
- Problem of high absorption of low energy electrons
- More layers might be beneficial

First Results

Photons

• Spectral reconstruction in

continuous photon fields working adequately

- Increasing overestimation of energy maximum for higher energies
- Fluence determination flawed

First Results

- Several problems even in easiest scenario (continuous, non-mixed)
- Severe energy overestimation
- similar energy deposition spectra
- Large absorption in low-energy
 regime → little information

- Simulation setup of Dosepix-based spectrometer
- Many challenges for spectral reconstruction, especially electrons
- Future steps:
 - Introduction of mixed radiation fields
 - Increasing dose rate \rightarrow consideration of pile-up effects
 - Approach with Machine-Learning based reconstruction (proof of concept done for 3 DPX up to 120 keV photons)
- Building

Thank You for Your Attention!

Bonus Slides

The Dosepix Detector Time-over-Threshold (*ToT*)

- Measure of deposited energy
- –Incoming voltage signal

–Reading clock cycles of 100 MHz Ref-Clk

-Number of cycles: *ToT*

0.025 mm Al		
0.095 mm Al		
0.24 mm Fe		
0.24 mm Mo		
0.51 mm Sn		
0.1 mm Mo		
0.2 mm Pb		
1.45 mm Pb		
2.5 mm Pb		
4.0 mm Pb		

Simulated Setup

- Focus on large pixels (12x16)
- Implementation of CSA-Digitizer module for total pile-up case
- Read-out hardware consisting of connector board and read-out hardware
- Approximation from existing Dosepix hardware and first drafts
- Might have large effect especially on electrons

