Monte Carlo simulations of a beam telescope setup based on a 65 nm CMOS Imaging Technology

Sara Ruiz Daza On behalf of the Tangerine Collaboration

23 May 2023, DESY (Hamburg) 4th Allpix Squared User Workshop

HEI MHOITZ

The Tangerine Project

Towards Next Generation Silicon Detectors

- Research and development of **new silicon sensors** for future lepton and electron-ion colliders, and test beam telescopes.
- Project goal: development of a sensor with **high spatial** (~ 3 µm) **and time resolution** (1-10 ns), and a **low material budget** (~ 50 µm Si).
- Comprising **all the steps of sensor R&D**: electronics design, sensor design based on simulations, prototype testing.
- Exploiting **monolithic sensors** based on a novel **65 nm CMOS imaging technology** with a **small collection electrode**.
- Primary initial goal: development of a **beam telescope** as integration step. **↩︎ This talk presents the first simulations.**

H2M Test Chip

Test beam telescope

• Used for **testing and characterisation of new devices**.

- **Some studies:**
	- Resolution: Correlate the sensor response to the hit position.
	- Efficiency: the DUT should have registered a hit; dit it or did it not?

DESY beam telescope

The telescope planes should reach a **high** (and known) **tracking resolution at the position of the DUT** (Device under Test).

TCAD, Allpix2, Corryvreckan

• Generic **doping concentrations** and precise **electric fields** are simulated using technology computer-aided design (**TCAD**).

> **Challenge: high computational cost and time-consuming simulations.** ↩︎ [See talk of M. A. Del Rio Viera](https://indico.cern.ch/event/1252505/contributions/5365826/)

- **Full response of the sensor and the test beam telescope** with high statistics is simulated with **Allpix2**.
- **Data analysis of the test beam telescope** is performed using **Corryvreckan.**

A. Simancas

DESY. | Monte Carlo simulations of a beam telescope setup based on a 65 nm CMOS Imaging Technology | Sara Ruiz Daza, 23-05-2023

Beam telescope setup for the first simulations

- **6 parallel planes**, perpendicular to a 5 GeV e- Gaussian spread beam.
- Each telescope plane consist of **1024x1024 pixels, pixel pitch 20 µm**.
- **DUT** is simulated as a 'silicon box': 50 µm thick (0.05% X/X_0).
- **Random misalignment and alignment correction** for position and orientation is included.

[telescope0] type = "detector model" $position = 0$ um 0um 0mm orientation mode = " xyz " orientation = 0deg 0deg 180deg alignment precision position = $1mm$ $1mm$ $100um$ alignment precision orientation = 0.2 deg 0.2deg 0.2deg pixel_size = 20um 20um sensor_thickness = 50um implant_size= 2.2um 2.2um sensor excess = 200um

type = "monolithic"

number_of_pixels = 1024 1024

[telescope5] type = "detector model" position = 0um 0um 900mm orientation_mode = "xyz" orientation = 0deg 0deg 180deg alignment precision position = 1mm 1mm 100um alignment precision orientation = 0.2 deg 0.2deg 0.2deg

DESY. | Monte Carlo simulations of a beam telescope setup based on a 65 nm CMOS Imaging Technology | Sara Ruiz Daza, 23-05-2023

DESY. 8 | Monte Carlo simulations of a beam telescope setup based on a 65 nm CMOS Imaging Technology | Sara Ruiz Daza, 23-05-2023

DESY. | Monte Carlo simulations of a beam telescope setup based on a 65 nm CMOS Imaging Technology | Sara Ruiz Daza, 23-05-2023 **10**

Energy deposition and charge carrier creation

Example of configuration

DESY. | Monte Carlo simulations of a beam telescope setup based on a 65 nm CMOS Imaging Technology | Sara Ruiz Daza, 23-05-2023

DESY. | Monte Carlo simulations of a beam telescope setup based on a 65 nm CMOS Imaging Technology | Sara Ruiz Daza, 23-05-2023 **13**

DESY. | Monte Carlo simulations of a beam telescope setup based on a 65 nm CMOS Imaging Technology | Sara Ruiz Daza, 23-05-2023

ar

DESY. | Monte Carlo simulations of a beam telescope setup based on a 65 nm CMOS Imaging Technology | Sara Ruiz Daza, 23-05-2023 **15**

Monte Carlo simulations and data analysis workflow Build Geometry Electric Field and Doping Profiles Energy Deposition and Initialization Charge Carrier Creation [GeometryBuilderGeant4] [ElectricFieldReader] [DepositionGeant4] [DopingProfileReader] 5 GeV e- $\bar{\epsilon}$ 0.02 – $rac{1}{8}$ $rac{0.08}{0.07}$ $-10 \mu m$ Gaussian beam $0.015 -$ — 50 μm 0.01 $-100 \mu m$ $0.005 -$ Pixellated $-0.005 -$ **Sensors** 0.03

- Detector alignment
-
- Track reconstruction
- …

30000 40000 50000 60000
Energy deposited [eV]

 0.02

 0.0

DESY. | Monte Carlo simulations of a beam telescope setup based on a 65 nm CMOS Imaging Technology | Sara Ruiz Daza, 23-05-2023 **16**

Test beam telescope

Track reconstruction & Residuals

Resolution at the different telescope planes

Biased residual distributions in X, dz = 150 mm

➤ Residual width obtained from the standard deviation of the distributions.

Different biased residual widths for the different planes.

$$
r_b^2(z) = \sigma_{int}^2 - \sigma_{t,b}^2(z)
$$

Resolution at the different telescope planes

Biased residual distributions in X, dz = 150 mm

- Error bars are smaller than the dot size: 250 000 events per data point.
- The tracking resolution deteriorates towards the outer planes.
- Biased residual width for the outermost plates are smaller than the ones for the inner planes, as

Tracking resolution and efficiency Standard layout

- A **smaller dz** improves the tracking resolution for the detection thresholds.
- An **increase in the detection threshold** does not result in a large deterioration of the tracking resolution, as is the case of the intrinsic resolution of a sensor. **Tracking efficiency** is highly deteriorated.

dz

- A **smaller dz** improves the tracking resolution for the detection thresholds.
- An **increase in the detection threshold** does not result in a large deterioration of the tracking resolution, as is the case of the intrinsic resolution of a sensor. **Tracking efficiency** is highly deteriorated.

DESY. | Monte Carlo simulations of a beam telescope setup based on a 65 nm CMOS Imaging Technology | Sara Ruiz Daza, 23-05-2023

Standard layout N-blanket layout N-gap layout

Standard layout N-blanket layout N-gap layout $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ Ξ $\boxed{\Xi}$ $-dz=10$ mm $-dz=20$ mm $dz = 30$ mm $dz=40$ mm $dz=10$ mm $-dz=20$ mm $dz = 30$ mm $-dz=40$ mm $dz=10$ mm $-dz=20$ mm $-dz=30$ mm $dz=40$ mm \times telescope resolution at the DUT in x telescope resolution at the DUT in x $-dz=70$ mm $-dz=50$ mm dz=60 mm $-dz=70$ mm $dz = 80$ mm dz=50 mm $dz = 60$ mm $-dz=70$ mm \times dz=80 mm dz=50 mm dz=60 mm dz=80 mm 71 telescope resolution at the DUT in $-dz=125$ mm $-dz=150$ mm $dz = 90$ mm $dz = 100$ mm $-dz=125$ mm $-$ dz=150 mm $dz = 90$ mm $dz = 100$ mm $-dz=125$ mm $-dz=150$ mm $-dz=90$ mm $dz = 100$ mm $6\frac{1}{2}$ $6⁺$ 5 $5₊$ -5 F $\begin{array}{c}\n4 \\
\uparrow \\
3\n\end{array}$ $3^{-\}$ \mathfrak{p} 2는 2는 - 1⊡ 400 100 $\overline{200}$ 250 300 350 400 100 150 200 250 300 350 150 100 150 200 250 300 350 400 threshold [e] threshold [e] threshold [e] \rightleftharpoons dz=10 mm $-dz=20$ mm $0.9\frac{E}{E}$
0.8 efficiency efficiency efficiency $-dz=30$ mm $-dz=40$ mm 0.8 $-$ dz=50 mm $-dz=60$ mm $0.8\Box$ $0.7E$ $-dz=70$ mm $dz = 80$ mm $0.7⁵$ $0.7⁵$ $-dz=90$ mm dz=100 mm 0.6 0.6 0.6 $-dz=10$ mm $-dz=20$ mm $-dz=125$ mm $-dz=150$ mm $dz=10$ mm $-z$ dz=20 mm 0.5 0.5 0.5 $-dz=30$ mm $-dz=40$ mm $dz = 30$ mm $-\text{d}z=40$ mm 0.4 0.4 0.4 $-dz=50$ mm $-dz=60$ mm $-dz=50$ mm $-$ dz=60 mm $0.3 0.3E$ 0.3 $-dz=70$ mm $-dz=80$ mm $-dz=70$ mm $-dz=80$ mm 0.2 0.2 $-dz=90$ mm $dz = 100$ mm 0.2 $-dz=90$ mm $dz = 100$ mm 0.1 0.1 \times dz=150 mm dz=125 mm $-dz=150$ mm \times dz=125 mm 0.1 0 ⊡ ი ს 0 ⊡ and the control $\overline{250}$ 300 350 400 100 150 200 400 100 150 200 250 300 350 300 350 400 100 150 200 250 threshold [e] threshold [e] threshold [e]

Layouts comparison

- Standard layout shows the best tracking resolution, but its tracking efficiency is deteriorated.
- Resolution slightly deteriorated for the n-gap layout, and high efficiency.

Summary & Outlook

Summary

- **TCAD + Allpix2** + **Corryvreckan** = fast, flexible, precise and complete studies.
- Test **beam telescope** has been simulated with different geometries.
	- \rightarrow **N-gap layout** showed a good spatial resolution and best efficiency compared with the other layouts.

Outlook

- Improving sensor simulations.
	- → Based on **our next test-chip prototypes**.
	- → Including a more **complex digitisation stage**.
- Easily **extend the beam telescope studies**: vary the material budget of the DUT, distance DUT-innermost plane, sensor designs…

DESY. | Monte Carlo simulations of a beam telescope setup based on a 65 nm CMOS Imaging Technology | Sara Ruiz Daza, 23-05-2023 **23**

Thank you!

Contact

Deutsches Elektronen-Synchrotron DESY Sara Ruiz Daza

sara.ruiz.daza@desy.de

www.desy.de

Back up

-
-
- -
- -
-
- - -
		-
-
-
- -
-
- -
-
-
-
- -
	-
-
- -
-
-
-
-
-
-
-
- -
-
-
- -
	-
	-
-
-
-
-
-
-
-
- - -
-
-
-
-
-
-
-
-
-
-
-
- -
-
-
-
-
-
-
-
-
-
-
-
-
- - -
		-
		-

Reconstructed cluster centre

- Cluster centre position is used for tracking —> cluster centre is closer to the track intersection than MC σ ($X_{\text{track}} - X_{\text{MC}}$) > σ ($X_{\text{cluster}} - X_{\text{track}}$)
- At the outermost planes, σ ($X_{cluster}$ X_{track}) becomes even smaller because GBL does not have scatters information, so only local residuals are available.

Investigated sensor layouts (I)

Standard layout

- ALPIDE like sensor
- Depletion:
	- Evolves from small pn junction
	- Edges and corners not fully depleted
	- $-$ Size limited V_{bias}
- **Charge propagation:**
	- In depleted region: drift
	- In non-depleted region: diffusion

- **Spatial resolution:**
	- Charge sharing
	- Good spatial resolution
- Efficiency:
	- Deteriorated at higher thresholds

W. Snoeys et al. doi:10.1016/j.nima.2017.07.046 W. Snoeys et al. doi:10.1016/j.nima.2017.07.046

Investigated sensor layouts (II)

N-blanket layout

- **Depletion :**

- Evolves from large pn junction
- Full lateral depletion
- **Charge propagation:**
	- Dominated by drift

- **Spatial resolution:**

- Charge sharing is reduced
- Spatial resolution is deteriorated

Efficiency:

- Higher efficiency

x (pixels)

M. Münker et al 2019 JINST 14 C05013 \circ al 2019 JINST 14 C0501

Investigated sensor layouts (III)

N-gap layout

- **Depletion :**

- Evolves from large pn junction
- Full lateral depletion

Charge propagation:

- Vertical pn junction \rightarrow increase lateral electric field
- Dominated by drift and faster

- **Spatial resolution:**

- Charge sharing is further reduced
- Spatial resolution is further deteriorated

Efficiency:

- Higher efficiency

By A. Simancas

Telescope resolution at the different planes

Different layouts and threshold values comparison

- The standard layout shows a better resolution (smaller biased residuals) at a threshold of 100 e- . However, this layout is expected to have the lowest efficiency.
- At higher thresholds, charge sharing is reduced, and the resolution deteriorates.

Simulations with a larger sensor size

25x25 µm2

• For larger pixel sizes, the spatial resolution and efficiency is deteriorated.

A more complete digitization

[DefaultDigitizer]

electronics noise = $35e$

threshold = $100e$

```
threshold_smearing = 0e
```

```
qdc\_resolution = 6
```
 $qdc_slope = 20e$

 $qdc_offset = -100$

Tracking resolution deteriorated \sim 0.5 µm.

Number of divisions in TCAD-to-Allpix2 conversion

TCAD mesh granularity is adapted to the different region

-
- Fields are adapted to a regularly spaced grid for faster field value lookup during simulation.
- Changes along the z-axis have a larger effect than changes in x and y (charge carriers collected via drift travel mainly vertically).

 0.01

 0.005

Maximum length of a simulation step

- The duration of the simulations is not affected by this parameter.
- Up to 5 μm maximum step length, there is no significant difference in these observables.
- Fo the 25 μm step length, charges are only deposited around two regions: close to the collection electrode (they drift) and in the substrate (they recombine) \rightarrow cluster size 1 is dominant, and the less charges are collected.

Photoabsoption Ionization Model

- In thin sensors, ionisation via photo absorption is significant → **PAI model has to be activated in our simulations.**
- For thick sensors, there is not significant difference.

Maximum number of charge carriers propagated per step

Collection implant size

- Once the charge carriers arrive at the collection electrode defined by TCAD, they are mostly immobile and they have a small probability to reach the small implant defined in Allpix2.
- A size at least as big as the TCAD implant size is needed.
- Size in Allpix²: $2.2 \times 2.2 \times 0.6 \mu m^3$

Example of a verification study

Maximum number of charge carriers propagated as a group

- A MIP transversing the sensor is expected to create ~800 e/h in the 10 µm thick epitaxial layer.
- The duration of the simulations shows a roughly linear dependance on the number of charge carriers propagated together.

• No significant difference between groups of 1,5 or 10 charge carries propagated together.

Example of a verification study

Maximum number of charge carriers propagated as a group

- **Efficiency** does not change significantly \rightarrow For efficiency simulations we can increase the maximum number of charges propagated as a group.
- **Resolution** is significantly affected → For resolution simulations, we should keep a small set of charge carriers propagated as a group**.**