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Radiation damage in silicon sensor bulk
Introduction 
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• The latest LHC roadmap: • High Luminosity (HL) LHC:   
 Peak luminosity:  
Average collisions/BC: ∼30→ ∼200  
 Integrated luminosity: 350 → 4000 

• Increased radiation damage!     
ATLAS/CMS Pixel detectors - exposed to unprecedented 
amount of radiation 
Crucial importance to model the impact of radiation damage 
-> accurate simulation of charged-particle interactions with the 
detector and the reconstruction of their trajectories 

1x1034 → 5 − 7x1034cm−2s−1

• Impact of radiation damage on detector operations : 
Increase in depletion voltage, leakage current 
Reduced charge collection efficiency due to trapping  

Smaller SNR -> bias in signal position reconstruction 

M. Moll, 
SIMDET 2018

https://hilumilhc.web.cern.ch/content/hl-lhc-project

https://hilumilhc.web.cern.ch/content/hl-lhc-project


Radiation damage modelling : ATLAS approach
Comparison of Run2,3 and HL-LHC strategy 
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Run 2 and Run 3

• Current strategy : Evaluate final position and  
induced signal of group of carriers in MC 

• Inputs:  

Precise electric field simulation (TCAD) to take into 
account radiation damage effects 

Weighting potential (TCAD) 

 Trapping rates (literature) 

• Expected increase of particles density and rates in HL-
LHC -> need for a faster algorithm 

New strategy is planed :  charge reweighing from look-
up tables  

• Idea : For each simulated charge q at depth z find in which 
pixel it will end up,  by how much (k) the signal will be 
reduced 

Goal: Simulated pixels in MC is corrected using these 
information before digitisation -> correction scheme 
implemented using Allpix-squared

HL-LHC

https://iopscience.iop.org/article/10.1088/1748-0221/14/06/P06012

https://iopscience.iop.org/article/10.1088/1748-0221/14/06/P06012


Allpix-squared for radiation damage digitiser 
Implementation strategy
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• Simulate sensors before and aer irradiation, per geometry and 
per fluence 

• Save k factor = collected charge aer/before irradiation for a 
pixel struck at a certain Z position  

• Evaluate Lorentz angle deflection as a function of Z position 

• Average free path as a function of Z

LUTs                  
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FLUKA + PYTHIA8 + A2 tune

ITk Inclined Duals

https://twiki.cern.ch/twiki/pub/AtlasPublic/RadiationSimulationPublicResults/s22duala_simev_itk.pdf

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2021-024/fig_01b.png



LUT #1 : CCE vs Z
How is CCE estimated?
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• Simulate point deposition ([DepositionPointCharge]) at different z position 

1 simulation per Z position 

• Get the fraction of induced charge 

• Plot CCE vs Z 

CCE = (total pix charge/ deposited charge) 

• Simulation details: 

100 events per Z position 

1000e deposited per event 

Scan performed every 2 um  

Simulation for 100 μm thick sensor at 4x1015 neq/cm2 and 600 V



CCE vs Z profile : Data and AP2 simulation 
CCE = (Pixel total charge)/(Deposited charge)
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ATLAS 13 TeV  results
ATL-INDET-INT-2022-002
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AP2 results, AP2 CS AP2 results, Athena CS

Opposite trend in AP2 : 
CCE is smaller at the pixel 
front side than the HV side 

https://cds.cern.ch/record/2840962/files/ATL-INDET-INT-2022-002.pdf
https://cds.cern.ch/record/2840962/files/ATL-INDET-INT-2022-002.pdf
https://cds.cern.ch/record/2840962/files/ATL-INDET-INT-2022-002.pdf


CCE vs Z profile 
Workaround estimation of CCE using Ramo potential
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Electrons Holes

Charge injection : 0um (mid-sensor plane)

Front FrontBack Back



CCE vs Z profile 
CCE estimated using Ramo potential
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CCE w/ Ramo potential

CCE w/ pixel charge

• Computing charge using 
Ramo gives a profile which 
is consistent with 
expectations 

• So, what is not working as 
expected? 

Thanks to AP2 developers -> 
better understanding of what is 
happening  

• Full thread here

https://allpix-squared-forum.web.cern.ch/t/charge-collection-efficiency-using-depositionpointcharge-in-irradiated-detector/335/10


Understanding CCE vs Z plots
Thanks to AP2 developers 
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CCE_SumPixelCharge
CCE_UsingRamo
CCE_MaxPixelCharge

• Charge injection = centre of pixel (200,96), pixel charge for one event :

• Central pixel (200,96) sees the largest 
charge  

• Neighbours see a non-zero (+ve) charge  
induced -> imbalance between electrons 
and holes introduced by the trapping

• Modified analysis script -> largest pixel charge 
contribution  (blue open dots) 

• Ignored the contribution from the neighbours to 
calculate the induced charge 

✦ Small positive charges are below threshold



LUT #1 : CCE vs Z
CCE estimated using highest pixel charge
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CCE profiles consistent 
with data

https://cds.cern.ch/record/2840962/files/ATL-INDET-INT-2022-002.pdf
https://cds.cern.ch/record/2840962/files/ATL-INDET-INT-2022-002.pdf
https://cds.cern.ch/record/2840962/files/ATL-INDET-INT-2022-002.pdf


LUT #2 :  vs Ztan(θL)
From Allpix-squared
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LUT #3 :  vs ZΔZ
From Allpix-squared
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• Deflection in x is proportional to the distance 
covered in z 

• In the radiation damage digitiser for Run2 and 3 -> 
is computed using a random generated value, 
which is not planned for HL-LHC -> need an 
average distance in z 
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Closure test
LUT propagator 
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• Using AP2, we’ve estimated : 

• CCE (Z), average Lorentz angle deflection as a function Z , 
average free path  

• Closure test to validate our approach : 

Simulate charge deposition  

Determine final position and fraction of induced charge using 
our LUTs: 

CCE(Z) = k(Z_deposited)*q(Z_deposited) 

Z_propagated = Z_deposited +  

x_propagated = x_deposited + 
 

Continue with transfer and digitisation steps 

Compare the results at 3rd bullet  with the ones obtained 
using the full chain that was used to produce the lookup table

ΔZ(Z )

ΔZ(Zdepsoied)

tan(θL)(Zdeposited) * ΔZ(Zdeposited)

LUT propagator codes : https://gitlab.cern.ch/knakkali/allpix-squared/-/tree/
308e1c9fa22590125f798d21199d72fb8fcfeec2/src/modules/LUTPropagator
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AP2-FullSimulation
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Excellent agreement !! 

https://gitlab.cern.ch/knakkali/allpix-squared/-/tree/308e1c9fa22590125f798d21199d72fb8fcfeec2/src/modules/LUTPropagator
https://gitlab.cern.ch/knakkali/allpix-squared/-/tree/308e1c9fa22590125f798d21199d72fb8fcfeec2/src/modules/LUTPropagator


Conclusion and outlook
 

14

• Silicon detectors at hadron colliders are exposed to unprecedented levels of radiation 
damage  

• Signal loss is the most important effect for cluster position determination  

• Simulation of these effects in ATLAS MC for HL-LHC -> pixel  
reweighting  

• Allpix-Squared plus detailed TCAD simulations to make correction to take into account 
signal reduction and cluster shape changes  

• Produced CCE vs Z,  tan( ) vs Z  and,  vs Z LUTs  from Allpix-squared 

  Huge shoutout to AP2 developers for their help at various stages of this work 

• Redo the studies using MIP  

• Simulation of  ITk 3D sensors with University of Trento and FBK

θL ΔZ

Thank you so much for your attention !! :) 



Backup



• Running AP2 on latest, modified RadDamVarTree to sum over all -ve charges 

•                       TP + PT                                                                                                       GP+IT   

CCE vs Z profiles
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• Test: look at the pixel charges in each event for Qinj at different z  

• Z > -15um -> positive charges are induced on neighbours  

• The small positive charges when injection is close to the front are due to holes that got 
trapped on the way back to the HV side. On the contrary when we inject close to the back 
there are electrons that travel quite some distance and get diffused and or drifted (a bit) by 
Lorentz force. So they end up in a region in which they can induce some charge also on the 
neighbours 

• The above hypothesis can be verified by looking PropagatedX and PropagatedY for z = -40 

Pixel charges in each event
10 events at different z values

Z = 47um (close to front side) Z = -47um (close to back side) Z = 0um (sensor center) 



PropagatedX and PropagatedY distributions
Z = -41um -> close to HV side
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• If the small negative charges are coming from the electrons migrated 
into the  neighbouring pixels, we should observe some events at : 

• PropagatedXPosition > 10.025 or propagatedXpositions < 9.975    
• PropagatedYPosition > 4.825 or propagatedYpositions < 4.775   

• This is not what we see in the plots on the right 
• How do we explain what we see? 



PropagatedX and PropagatedY
Z = -41um, for electrons and holes
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