A TIMEPIX3 FRONT-END SIMULATOR PLUGIN FOR ALLPIX2

4TH ALLPIX SQUARED WORKSHOP

2023

LUKAS TLUSTOS, PINELOPI CHRISTODOULOU

CZECH TECHNICAL UNIVERSITY IN PRAGUE

OUTLINE

- Introduction Aim of research
- Implementation of new features:
 - New preamplifier model for improved low signal modeling,
 - System noise
- Results of clustering analysis
- Conclusions

MOTIVATION

- Study the limits of Timepix3 in spectroscopic X-ray imaging with data driven architecture.
- Study of spatial resolution and spectral performance.
- Simulation has to match the actual detector response as close as possible.

TIMEPIX3 DETECTOR

type = "hybrid"

number_of_pixels = 15 15
pixel_size = 55um 55um

sensor_thickness = 500um
sensor_excess = 1mm

bump_sphere_radius = 15.0um bump_cylinder_radius = 17.0um bump_height = 20.0um

chip_thickness = 700um chip_excess_top = 0um chip_excess_bottom = 1610um chip_excess_right = 10um chip_excess_left = 10um

[support]
thickness = 1.76mm
size = 3.5mm 3.5mm
location = "absolute"
offset = 0 0 1.85mm
material = "g10"

[support]
thickness = 0.8mm
size = 15mm 15mm
material = "copper"
location = "absolute"
offset = 0 0 3.13mm

[support]
thickness = 5mm
size = 15mm 15mm
material = "aluminum"
location = "absolute"
offset = 0 0 6.125mm

NEW PIXEL PRE-AMPLIFIER MODEL

- Added additional pole to the transfer function
- 3 parallel 1st order Butterworth low-pass filtered feedback loops
- Tanh feedback tapering
- Separate leakage current compensation with a long time constant

• Improved modelling of low input response and preamplifier undershoot

LOW SIGNAL MODELING

SYSTEM NOISE

Independent bandwidth filtered noise channels for

- I. pre-amplifier,
- 2. feedback and
- 3. threshold noise
- Glitch filtered discriminator for ToA/ToT registration

TOT CALIBRATION TEST-PULSEVS SIMULATION

Single pixel test-pulse, all other pixels disabled Measurement for thresholds below 750e include noise hits, ToT response curve shape still preserved

Corresponding test pulse simulation

Feedback current values do not exactly match Shape and evolution of ToT response very well reproduced over a large range of threshold values

AIM

GOAL: Sub-pixel resolution for spectral X-ray imaging with Timepix3

Problem: Sub threshold losses due to charge sharing.

Solution: Probability maps for initial position and energy for a given cluster

- Realistic simulation of the front-end response with Allpix squared
- Signal distribution maps of deposited charge

CLUSTERING ANALYSIS SINGLE PIXEL "CLUSTER"

CLUSTERING ANALYSIS DOUBLE PIXEL CLUSTERS

Timepix3 Readout

Charge deposited in Pixels

Charge deposited in the Sensor

THREE PIXEL CLUSTERS

FOUR PIXEL CLUSTERS

Charge collected in Pixels

Charge deposited in the Sensor

CONCLUSIONS

- In reality the feedback and the time constant in the preamplifier are **not** fixed: they depend on the charge input.
- Limitations:
- I. Effects with high input charges cannot be simulated properly (volcano effect)
- 2. Long simulation times due to long time constant for the leakage current compensation.
- The offset between the signal from the timepix3 readout for clusters of 1,2,3 pixels and the signal from the charge deposited in the sensor is significant.

Next steps:

- Inversion of maps to create probability maps for initial energy and initial interaction position
- Experimental verification of probability maps

EXTRA SLIDES

Charge sharing

Jan Jakubek, Energy-sensitive X-ray radiography and charge sharing effect in pixelated detector, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 607, Issue 1, 2009, Pages 192-195, ISSN 0168-9002,