Hexagonal pixel simulations in Allpix Squared

H. Wennlöf, with much input from Larissa Mendes

23/5 -23

Outline

- Introduction
 - Hexagonal geometry
- Implementation in Allpix Squared
- Usage how-to
- Example studies
 - Both fast and detailed simulations
- Conclusions and outlook

Benefits of hexagons

- Hexagonal pixels used in more and more developments
 - E.g. FASTPIX, MONOLITH, PicoAD
- Several **benefits** compared to rectangular pixels
 - Charge sharing only between 3 pixels
 - Maintains **efficiency** for small signals
 - Reduced **pixel perimeter**
 - 7% less than for a square pixel with the same area
 - **Reduced distance** between edges and collection electrode
 - Potentially **faster** charge collection
 - More obtuse corners 120° instead of 90°
 - Same distance between all adjacent pixel centres

Definitions

- An **axial** coordinate system is used for hexagonal pixel matrices in Allpix Squared
 - Good resource on hexagonal systems can be found <u>here</u>
- Pixel pitch needs to be defined differently to rectangles
 - In Allpix Squared, pitch is defined by the "outer radius" of the hexagon (i.e. as "corner to corner")
 - p_x, p_y in the figures on the right
 - Pitches align with axial coordinate system
- 2 hexagon orientations; "pointy" and "flat"
 - "Pointy" have sides parallel to Cartesian y
 - "Flat" have sides parallel to Cartesian x

0,3

1,1

0,2

1,0

1,3

2,1

1,2

2,0

-1,3

0,1

-1,2

0,0

Axial coordinate system

(a) 8x4 grid with *pointy* hexagons

(b) 8x4 grid with *flat* hexagons

Figures from documentation

- Number of pixels counted along **Cartesian axes**, taking offset into account
- Results in different matrix shapes for pointy and flat orientations

Irregular shapes

Figures from <u>MR 539</u>

• The pixel size can be **different in the two directions**, resulting in a stretched/squished hexagons

How-to in Allpix Squared

Usage

- What is needed in the configurations?
 - Changes in the **detector model** file
 - Set the **geometry** parameter to "hexagonal"
 - Select the hexagon orientation via the **pixel type** parameter
- Set number of pixels, see slide 5 on the effect of hexagon orientation
- Note: things to keep in mind for analysis
 - Negative pixel indices are possible (difference to rectangular pixels)
 - Coordinate system is different (angle between axes is not 90°)

geometry = "hexagonal"
pixel_type = "hexagon_pointy"
pixel_type = "hexagon_flat"

Example studies

Simple fast simulations

- Allows **rapid prototyping** of algorithms, and testing of geometries
 - Example: hexagonal eta correction development
- Detector model (on the right) set up for a monolithic sensor with flat-topped hexagons

```
type = monolithic
 1
2
    geometry = "hexagonal"
 3
    #pixel_type = "hexagon_pointy"
4
 5
    pixel_type = "hexagon_flat"
 6
 7
    number_of_pixels = 20 20
 8
    pixel_size = 25um 25um
 9
10
    sensor_thickness = 100um
```

Simple fast simulations

- Pion beam
- Linear electric field
- **Projection** propagation
- Simple and fast, 500 000 events takes ~7 minutes to run with 7 cores on my laptop

```
□ [Allpix]
 1
     number of events = 500000
 2
 3
      detectors file = "detector.conf"
multithreading = true
 5
    □ [GeometryBuilderGeant4]
 6
 7
    □ [DepositionGeant4]
 8
      particle_type = "Pi+"
 9
      source_energy = 120GeV
10
      source_type = "beam"
11
     beam size = 20um
12
13
      source position = 0um 0um -200mm
     beam_direction = 0 0 1
14
15
16
    □ [ElectricFieldReader]
     model="linear"
17
     bias voltage=-50V
18
      depletion_voltage=-30V
19
      output_plots = 1
20
21
    □ [ProjectionPropagation]
22
     charge_per_step = 10
23
     output_plots = 1
24
25
    □ [SimpleTransfer]
26
     output_plots = 1
27
28
    □ [DefaultDigitizer]
29
     output_plots = 1
30
      threshold = 500e
31
32
    □ [DetectorHistogrammer]
33
34
     output plots = 1
     track resolution = 0 0
35
     granularity = 100, 100
36
```

Simple fast simulations - results

Cluster size

• Cluster sizes in x- and y-directions, in the hexagonal coordinate system for a 25x25 µm pixel size

Simple fast simulations - results

Full cluster size

- Cluster size and shape looks as expected
 - The tested sensor is relatively thick in order to reach higher cluster sizes in places, to allow testing of eta correction calculations for both 2- and 3-pixel clusters
- "Bottom-left" pixel in a cluster used as reference for cluster shape; leads to two most-common cluster shapes for 3-pixel clusters

48.7% of 3-pixel clusters

48.5% of 3-pixel clusters

Simple fast simulations - results

Mean efficiency

- Efficiency looks as expected
 - Threshold is relatively high here, just to demonstrate a drop occurring at pixel edges first
- Flat hexagonal shape shows up well
 - Bins are square, but many

Example: hexagonal eta correction

- Correcting for **nonlinear charge sharing** in hexagonal pixels
- Needs to be different compared to rectangular pixels
 - Working in an r- ϕ coordinate system
 - Allows correction also of 3-pixel clusters
- Won't go into details, but development was simplified by the fast simulations, and the algorithm has been applied both to data (FASTPIX, by J. Braach) and simulations in the Tangerine project

Full residual in r, after both 2- and 3-cluster corrections

Hexagonal simulations in the Tangerine project

All results by L. Mendes

- Generating TCAD fields with the methodology shown in <u>Adriana's presentation</u> earlier
- Full 3D simulations of a single full hexagonal pixel
- Electric field and doping concentration exported

Importing a TCAD field

- Imported using the **mesh converter** tool
 - Important: tool uses interpolation, and expects points to interpolate between
 - If none found, the search radius is increased, and interpolation is aborted when max_radius is reached
- When importing non-rectangular shapes: use the **allow_failure** keyword in the mesh converter configuration
 - Sets mesh element to zero if no neighbouring points are found in the input mesh
 - This way, the regularly-spaced mesh used in Allpix Squared will have the correct shape
- Loaded into the simulation using the PIXEL_FULL field mapping (see <u>documentation</u> for other variants)

model = "APF" region = "si-bulk" 2 observable = ElectricField 3 observable_units = "V/cm" 4 **divisions** = 300 300 100 5 initial_radius = 0.01 6 7 xyz = x y - zmax_radius = 1 8 allow_failure = true 9 10 workers = 2011

Converted electric field, at a cut in z

Simulation setup

- Using **TCAD** field, and energy deposition via **Geant4**
- Comparing the performance of **hexagonal pixels** to that of **square pixels of equivalent area**
 - The pixel area is a key parameter for fitting the same in-pixel electronics in
- Beam of 5 GeV electrons
 - 1 electron per event
 - 500 000 events
 - Sensitive area much larger than beamspot (100x100 pixels)
- Extended Canali mobility model (accurate over a wide range of field strengths, and doping-dependent)
- Shockley-Read-Hall-Auger recombination model (valid over a wide range of doping concentrations)
- Digitisation stage is run several times with different thresholds

```
□ [AllPix]
      number of events = 500000
 2
      detectors file = ".../Detector.conf"
 3
 4
    □ [GeometryBuilderGeant4]
 5
      world material = "air"
 6
 7
 8
    □ [DepositionGeant4]
9
      physics_list = QGSP_BERT_EMZ
      enable_pai = 1
10
      particle_type = "e-"
11
12
      number_of_particles = 1
13
      source_energy = 5GeV
14
      source position = 0um 0um -10mm
15
      source_type = "beam"
16
      beam_size = 100um
17
      beam divergence = 0mrad 0mrad
18
      beam_direction = 0 0 1
      max_step_length = 0.5um
19
20
21
    □ [ElectricFieldReader]
22
      model = "mesh"
23
      file_name = "hex-cmos-field_ElectricField.apf"
24
      field_depth = 10um
25
      field_mapping = PIXEL_FULL
26
27

[DopingProfileReader]
28
      model = "mesh"
29
      file_name = "hex-cmos-field_DopingConcentration.apf"
30
      doping depth = 10um
31
32
      field mapping = PIXEL_FULL
33
    □ [GenericPropagation]
34
      mobility model="masetti canali"
35
      recombination model = "srh_auger"
36
      charge per step = 5
37
      timestep min = 0.5ps
38
      timestep max = 0.05ns
39
      integration time = 25ns
```

Results - cluster size

DESY.

- Comparing standard layout and n-gap layout, for a 35x35 µm hexagonal pixel size
- In-pixel cluster size for different thresholds, for the **standard layout**
- Efficiency loss visible already at a threshold of 140 electrons

Results - cluster size

- Comparing standard layout and n-gap layout, for a 35x35 µm hexagonal pixel size
- In-pixel cluster size for different thresholds, for the **n-gap layout**
- Smaller than for standard, as expected (n-gap depleted, and funnels charge more towards collection electrode) .

Results - resolution

- Defined as the RMS of the central 3σ of the (MC hit position reconstructed position) distribution
 - Reconstructed position is charge-weighted mean position for a cluster, using the full collected charge information
- Comparing a square pixel with a size of 14.5x14.5 μm and a hexagonal pixel with a size of 18x18 μm (same pixel area)
- Standard has **better resolution than n-gap** in both geometries, due to increased cluster size and thus better position interpolation
- Hexagonal geometry **significantly improves resolution** compared to square

Results - efficiency

- Mean efficiency for different thresholds
- Comparing a square pixel with a size of 14.5x14.5 μm and a hexagonal pixel with a size of 18x18 μm (same pixel area)
- Standard layout is less efficient than n-gap layout, for both geometries
- Hexagonal geometry (blue) shows **decrease in efficiency** compared to square
 - This is **unexpected**
 - Less shared charge is expected to lead to higher efficiency
 - Investigations are ongoing into the cause of this...

Mean Efficiency vs Threshold

Conclusions and outlook

Conclusions and outlook

- Hexagons work well in Allpix Squared
 - Can perform both simple and complex simulations using them
 - Only small alterations are needed in the configuration files to use hexagons instead of rectangles
 - Results (mostly) match expectations
- Some details of results of the Tangerine studies **need to be understood** - studies are ongoing
 - Larissa (who has done most of the hexagon work in Tangerine) starts as a PhD student with us in June - we'll figure things out properly then
 - Hexagons may be a viable geometry for future sensor submissions in the used CMOS imaging technology
 - Simulations will guide the way!

MCParticle position hitmap for detector1 (local coord.)

y (mm)

Backup slides

DESY.

Algorithm for 2-pixel clusters

- Find the pixel in the cluster with the **lowest index**, i.e. the bottom-left pixel of the cluster
 - This is just a choice of what to use as reference position
- The centre of this pixel is the reference position; calculate r and φ of reconstructed position and track/truth position relative to this
- Taking the difference in φ , project the track radial position onto the cluster position radial direction
- Plot the projected track radial position vs the cluster position, and do a fit to get the correction in r
 - There is nothing to be done to correct the φ direction difference for 2-pixel clusters
- To reconstruct, find the reference pixel in the same way, find the cluster position in the r direction, and evaluate the fitted function there and take that value instead

Yellow is track position, red is reconstructed

$$\Delta \varphi = \varphi_{\text{track}} - \varphi_{\text{cluster}}$$
$$r_{\text{track, projected}} = r_{\text{track}} \cdot \cos{(\Delta \varphi)}$$
$$phiDist_{\text{track, projected}} = r_{\text{track}} \cdot \sin{(\Delta \varphi)}$$

Results - efficiency

DESY.

- Comparing standard layout and n-gap layout, for a 35x35 µm hexagonal pixel size
- In-pixel efficiency for different thresholds, for the **standard layout**
- Significant efficiency loss already at a threshold of 140 electrons

Results - efficiency

- Comparing standard layout and n-gap layout, for a 35x35 µm hexagonal pixel size
- In-pixel efficiency for different thresholds, for the **n-gap layout**
- Efficiency is maintained even at a threshold of 400 electrons

