Radial Strip Detectors for Cosmic Ray Studies

4th Allpix Squared User Workshop

Maximilian Caspar, Radek Privara Hamburg, 22.05.2023

HELMHOLTZ

What are Strip Detectors?

Strips

- Strips are basically "very long pixels" (usually several cm)
- n x n Pixel Detector: n² readout channels
- Covering the same area with 2 strip detectors: 2n channels
- Stereo angle allows for reconstruction of 2D position, but leaves ambiguity in multi-hit events

The Detector Layout

ATLAS IT & Strips Modules The Detector Layout Pixel Endcap Sections Pixel

Building the Petal

The Rings

- Petal made up of six rings R0 R5
- Module in rings R3 R5 are split

The Sides

- Each petal has a front and a back side
- Back side sensors are rotated 180°

For Simulations

- Complete module positions for a single petal available in an Allpix² example
- In petal coordinates (relative to origin fiducial) Available at https://gitlab.cern.ch/allpix-squared/allpix-squared/-/tree/radial det fix center/examples/atlas itk petal

Endcap System Test

System Tests at DESY

- 1/8 slice of the Endcap as a testing environment
- Can support up to 12 petals at once
- Services & DAQ close to the real detector
- Plan: Measure cosmic muons with it!

The Stereo Annulus Geometry

The Stereo Annulus Geometry

Coordinate System

ATLAS ITk Strips Modules

R defined by distance to the beam axis

The Stereo Annulus Geometry

Φ defined in relation to a shifted point F

Outer Shape

- Intersection between two annulus sections
- The second annulus section is rotated by the stereo angle around the origin point
- Added additional distance around the active area

Strips

- All strips in a row start & end at the same radii
- Each row has the same angular pitch

Tacking Telescope with Radial Sensors

R0 Telescope Simulation Benchmark

- Geometry of the Radial Strip sensors newly implemented in Allpix² & Corry
- Telescope made up of R0 modules served as a first benchmark of our implementation <u>s</u>

Results

Wafer coordina

Tacking Telescope with Radial Sensors

R0 Telescope Simulation Benchmark

- Geometry of the Radial Strip sensors newly • implemented in Allpix² & Corry
- Telescope made up of R0 modules served as a first • benchmark of our implementation

P0Front Cluster Position (Global)

Results

40

DESY. 4th Allpix Squared User Workshop | Simulation of Radial Strips for Cosmic Ray Studies | Maximilian Caspar

600

Tacking Telescope with Radial Sensors

R0 Telescope Simulation Benchmark

- Geometry of the Radial Strip sensors newly implemented in Allpix² & Corry
- Telescope made up of R0 modules served as a first benchmark of our implementation

P1Back: correlation Y

Results

Tacking Telescope with Radial Sensors

R0 Telescope Simulation Benchmark

- Geometry of the Radial Strip sensors newly implemented in Allpix² & Corry
- Telescope made up of R0 modules served as a first benchmark of our implementation

Results

DESY. 4th Allpix Squared User Workshop | Simulation of Radial Strips for Cosmic Ray Studies | Maximilian Caspar

Cosmic Rays in Allpix²

Cosmic-ray Shower Library (CRY)

- Generates realistic cosmic ray distributions
- Particles are returned in a square plane surface https://doi.org/10.1109/NSSMIC.2007.4437209

The DepositionCosmics Module

- Can be called within Allpix² to generate showers
- Allows for selection of CRY framework parameters
 - Altitude & Latitude
 - Solar Cycle
 - Particles Types
- Returns total simulated time for all events

https://gitlab.cern.ch/allpix-squared/allpix-squared/-/tree/master/src/modules/DepositionCosmics

Procedural Geometry Generation

Endcap Geometry

- Endcap has 6 discs
 - Each disc has 16 front and 16 back petals
 - Petals are evenly spaced on the disc

Procedural Generation

- For each petal position the sensor coordinates are transformed
 - Rotation of 22.5° per segment around the beam axis (+ 11.25° for back petals)
 - Displacement in z depending on disc number (+ 17 mm for front petals)
- Detector center of mass (in XY) is calculated and subtracted

```
makePetal(disc=0, front=True, segment=0):
discDisplacement = DISPLACEMENTS[disc]
angleDisplacement = segment * 22.5
if not front:
    angleDisplacement += 11.25
    discDisplacement += 17
sensors = getSensors()
for s in sensors:
    module = {}
    module["Type"] = sensors[s]["type"]
    module["Z"] = sensors[s]["Z"]
    module["Z"] += discDisplacement
    module["X"] = cos(radians(angleDisplacement)) * sensors[s]["X"] - \
        sin(radians(angleDisplacement)) * sensors[s]["Y"]
    module["Y"] = sin(radians(angleDisplacement)) * sensors[s]["X"] + \
        cos(radians(angleDisplacement)) * sensors[s]["Y"]
    module["Alpha"] = sensors[s]["Alpha"] + angleDisplacement
    if front:
        module["Name"] = f"D{disc}S{segment}F{s}F"
        module["Name"] = f"D{disc}S{segment}B{s}F"
    module["Front"] = True
    modules.append(module)
sensors = getSensors()
for s in sensors:
    module = \{\}
    module["Type"] = sensors[s]["type"]
    module["Z"] =
                    sensors[s]["Z"]
    module["Z"] += discDisplacement
    module["X"] = -cos(radians(angleDisplacement)) * sensors[s]["X"]
        sin(radians(angleDisplacement)) * sensors[s]["Y"]
    module["Y"] = -sin(radians(angleDisplacement)) * sensors[s]["X"] +
        cos(radians(angleDisplacement)) * sensors[s]["Y"]
    module["Alpha"] = - sensors[s]["Alpha"] + angleDisplacement
    if front:
        module["Name"] = f"D{disc}S{segment}F{s}B"
        module["Name"] = f"D{disc}S{segment}B{s}B"
    module["Front"] = False
    modules.append(module)
```

System Test Cosmics Setup (4 Petals)

The Setup in Allpix²

- Cosmic muon run with 4 petals planned this year
- Usage of 10 cm concrete ceiling to mimic the laboratory building
- Cosmics generated on 1m x 1m square

The Analysis in Corryvreckan

- Clustering is done in radial coordinates before conversion into the cartesian system
- At least 7 hits per track
- Rejecting tracks where multiple clusters are in the same z plane

System Test Cosmics Setup (4 Petals)

The Setup in Allpix²

- Cosmic muon run with 4 petals planned this year¹/_{*}
- Usage of 10 cm concrete ceiling to mimic the laboratory building
- Cosmics generated on 1m x 1m square

The Analysis in Corryvreckan

- Clustering is done in radial coordinates before conversion into the cartesian system
- At least 7 hits per track
- Rejecting tracks where multiple clusters are in the same z plane

System Test Cosmics Setup (4 Petals)

The Setup in Allpix²

- Cosmic muon run with 4 petals planned this year
- Usage of 10 cm concrete ceiling to mimic the laboratory building
- Cosmics generated on 1m x 1m square

The Analysis in Corryvreckan

- Clustering is done in radial coordinates before conversion into the cartesian system
- At least 7 hits per track
- Rejecting tracks where multiple clusters are in the same z plane

Reconstructed Tracks

System Test Cosmics Setup (4 Petals)

The Setup in Allpix²

- Cosmic muon run with 4 petals planned this year
- Usage of 10 cm concrete ceiling to mimic the laboratory building
- Cosmics generated on 1m x 1m square

The Analysis in Corryvreckan

- Clustering is done in radial coordinates before conversion into the cartesian system
- At least 7 hits per track
- Rejecting tracks where multiple clusters are in the same z plane

Reconstructed Tracks

System Test Cosmics Setup (4 Petals)

The Setup in Allpix²

- Cosmic muon run with 4 petals planned this year
- Usage of 10 cm concrete ceiling to mimic the laboratory building
- Cosmics generated on 1m x 1m square

The Analysis in Corryvreckan

- Clustering is done in radial coordinates before conversion into the cartesian system
- At least 7 hits per track
- Rejecting tracks where multiple clusters are in the same z plane

Affective Area Measurement in Allpix²

Effective Area

- Gives detector area estimate for complex 3D particle detectors
- Area is defined by the fraction of particles accepted by the detector

Affective Area Measurement in Allpix²

Effective Area

- Gives detector area estimate for complex 3D particle detectors
- Area is defined by the fraction of particles accepted by the detector

Effective Area Simulation with Allpix²

- Simulate cosmic rays hitting the detector using the DepositionCosmics module
 - DepositionGeant4 / DepositionCosmics have the option record_all_tracks.
 Enabling it make sure you get all primary particles
- 2. Record all parent *MCTrack* objects in the simulation or store histograms of their direction
- 3. Perform track reconstruction on the simulated events
- 4. Calculate the effective area

Affective Area Measurement in Allpix²

Effective Area

- Gives detector area estimate for complex 3D particle detectors
- Area is defined by the fraction of particles accepted by the detector

Effective Area Simulation with Allpix²

- Simulate cosmic rays hitting the detector using the DepositionCosmics module
 - DepositionGeant4 / DepositionCosmics have the option record_all_tracks.
 Enabling it make sure you get all primary particles
- 2. Record all parent *MCTrack* objects in the simulation or store histograms of their direction
- 3. Perform track reconstruction on the simulated events
- 4. Calculate the effective area

[DepositionCosmics] physics_list = FTFP_BERT_LIV return_muons = true return_neutrons = false return_protons = false return_electrons = false return_pions = false return_kaons = false altitude = 0m number_of_particles = 50 record all tracks = true

Affective Area Measurement in Allpix²

Effective Area

- Gives detector area estimate for complex 3D particle detectors
- Area is defined by the fraction of particles accepted by the detector

Effective Area Simulation with Allpix²

- Simulate cosmic rays hitting the detector using the DepositionCosmics module
 - DepositionGeant4 / DepositionCosmics have the option record_all_tracks.
 Enabling it make sure you get all primary particles
- 2. Record all parent *MCTrack* objects in the simulation or store histograms of their direction
- 3. Perform track reconstruction on the simulated events
- 4. Calculate the effective area

Affective Area Measurement in Allpix²

Effective Area

- Gives detector area estimate for complex 3D particle detectors
- Area is defined by the fraction of particles accepted by the detector

Effective Area Simulation with Allpix²

- Simulate cosmic rays hitting the detector using the DepositionCosmics module
 - DepositionGeant4 / DepositionCosmics have the option record_all_tracks. Enabling it make sure you get all primary particles
- 2. Record all parent *MCTrack* objects in the simulation or store histograms of their direction
- 3. Perform track reconstruction on the simulated events
- 4. Calculate the effective area

Conclusion and Outlook

What now?

What we did

- Successfully tested & implemented:
 - Radial Strips geometry in Allpix²
 - Tracking for Radial Strips in Corryvreckan
 - Procedural generation of the endcap geometry
- Performed muon flux simulation for System Test studies
 What's left to do
- Test sensor alignment in Corryvreckan
- Study the tracking resolution of the System Test muon setup
- Test it all on real cosmics data 🙂

Thank you

Contact

Deutsches Elektronen-Synchrotron DESY Maximilian Felix Caspar ATLAS maximilian.caspar@desy.de

www.desy.de

Backup Slides

The ITK Strips Endcap Modules

Sensor

- 320 µm p-bulk silicon, n-implant strips
- For Endcap: "Stereo Annulus"-shape

Readout Electronics

- Front-end electronics located on a PCB ("Hybrid") glued to the sensor
- Strips are wire bonded to the front-end chips
- Sensor is glued to a capton PCB ("Bustape") that also carries an End-of-Substructure card with optical links

Reconstruction in Corry

Clustering in Radial Coordinates

Radial Coordinates (on Sensor)

- Each row of strips is associated with an angular and radial pitch
- Resolutions in R / φ are calculated by assuming uniform distribution
- Radius and angle of the cluster centre are calculated using inverse-variance weighted averaging

Reconstruction in Corry

Cluster Centre in Cartesian Coordinates

- Cluster centres are translated into cartesian coordinates for tracking in Corryvreckan
- Resolutions in local cartesian coordinates are found using gaussian error propagation
- Global resolution matrix is calculated by rotating the error ellipsis

$$\varphi^* = 2 \cdot \alpha + \gamma + \varphi + \varphi_{\text{Stereo}} - \pi$$

Cartesian Position in local coordinates

Implemented in https://gitlab.cern.ch/rprivara/corryvreckan/-/blob/polar_detectors/src/core/detector/PolarDetector.cpp

Reconstruction in Corry

Cluster Centre in Cartesian Coordinates

- Cluster centres are translated into cartesian coordinates for tracking in Corryvreckan
- Resolutions in local cartesian coordinates are found using gaussian error propagation
- Global resolution matrix is calculated by rotating the error ellipsis

$$\binom{X}{Y} = R \cdot \binom{\sin \varphi^*}{\cos \varphi^*}$$

Cartesian Position in local coordinates

Gaussian Error Propagation

$$\sigma_X^2 = \sigma_R^2 \cdot \frac{\partial X}{\partial R} \Big|_{(R,\varphi)}^2 + \sigma_\varphi^2 \cdot \frac{\partial X}{\partial \varphi} \Big|_{(R,\varphi)}^2$$
$$\sigma_Y^2 = \sigma_R^2 \cdot \frac{\partial Y}{\partial R} \Big|_{(R,\varphi)}^2 + \sigma_\varphi^2 \cdot \frac{\partial Y}{\partial \varphi} \Big|_{(R,\varphi)}^2$$

Implemented in https://gitlab.cern.ch/rprivara/corryvreckan/-/blob/polar_detectors/src/core/detector/PolarDetector.cpp