Simulating Monolithic Active Pixel Sensors Using Generic Doping Profiles

Adriana Simancas on behalf of the Tangerine Project + D. Dannheim, K. Dort, W. Snoeys 4th Allpix Squared Workshop 23 May 2023 Hamburg, Germany

Introduction & Motivation

Monolithic active pixel sensors (MAPS) in particle physics:

★ Reduction in material budget compared to most hybrid detectors

Science moving to CMOS commercial foundries Advantages & Disadvantages:

- ★ Solution to single-vendor problem
- ★ Profit from state-of-the-art technology
- ★ Reduce costs in large-scale production
- ★ Limited access to manufacturing process information

Introduction & Motivation

Developing a new detector:

- ★ Prototype Testing: characterize sensor under realistic conditions
- ★ Simulations: predict sensor behaviour and test designs
 - Electric field distribution in sensor highly dependent on doping concentration and doping profiles
 - MAPS with a <u>small collection electrode</u> have highly complex electric fields

A Technology-Independent Approach Using Generic Doping Profiles

★ Performing simulations based on **fundamental principles** of silicon detectors and using generic doping profiles

 \rightarrow MAPS performance parameters can be inferred

- ★ Do not aim to resolve CMOS imaging processes, but merely describe general features relevant for sensor volume response
- ★ Results shown in context of **Tangerine Project** (see following talks)

★ Methodology described is useful for many different silicon sensor simulations

 \rightarrow Toolbox for similar simulations

 \rightarrow Extracting reasonable description of sensor behaviour

Tools

- ★ Model semiconductor devices by means of finite element analysis
- ★ Electric Fields: accurate and realistic

- ★ Simulate full response of semiconductor detector
- ★ Particle Events: fast and high statistics

Layouts & Assumptions

General Layout & Assumptions

- ★ High-resistivity p-doped epitaxial layer grown on electronics-grade p-doped silicon substrate
- ★ Approximate public doping concentrations:
 - Substrate: 10¹⁹ cm⁻³
 - Epitaxial layer: $3 \cdot 10^{13} \, \text{cm}^{-3}$
 - \circ Doping wells: 10^{15} to $10^{19}\,cm^{-3}$
- ★ Doping wells simulated without internal structure and as flat profiles:
 - Small collection n-well in the centre of the pixel
 - P-well hosts and shields in-pixel CMOS electronics

Geometry & Layouts

- 3D geometry with collection wells in corners \star
- Ohmic contacts simulated to provide bias voltages \star (highly-doped region)
- Substrate is simulated only in Allpix², not in TCAD \star
- Rectangular and hexagonal pixel geometries (see \star talk by H. Wennlöf)
- Layouts with modifications to improve electric field \star

Standard Layout

doi:10.1016

Ċ

N-Blanket Layout

N-Gap Layout

Finite Element Simulations with TCAD

TCAD Simulations

- ★ Scans over different parameters: well doping concentrations, mask geometries and operational voltage
- ★ Observe behavior of electric field, lateral electric field and depleted volume
- ★ Select parameters that reproduce expected physical behaviour

TCAD - Process Simulations

Effects from production process temperatures

- ★ Diffusion between different doping regions
- ★ Continuous interface between epitaxial layer and substrate

TCAD - Quasistationary Simulations

- ★ N-blanket doping concentration scan
 - Impact on depleted volume (white line)
- ★ N-gap size scan
 - Impact on lateral electric field (red and blue regions)

Doping Concentration

(a) 1 µm gap

(b) 2.5 µm gap

(c) 4 μm gap

TCAD - Transient Simulations

Time-dependent induced signal by MIP

★ MIP incidence comparison

• Pixel corner "worst case scenario" -

• Pixel centre "best case scenario"

★ Layout comparison

• Improvements brought on by modifications

TCAD Simulations - Final Result

Monte Carlo Simulations with Allpix²

Monte Carlo Simulation Workflow Example

Monte Carlo Simulations - Mobility

Take into account important details...

E.g.: Mobility Models

- ★ Jacoboni-Canali (doping-independent) -
 - Sufficient for low doping concentration
 - For high doping concentration (substrate) diffusion is unphysically large
- ★ Masetti-Canali (doping dependent) .
 - Fit for high doping concentration

Monte Carlo Simulations - Diffusion

Comparing effect of electric field between substrate and epitaxial layer

- Without dopant diffusion: significant electric field in interface region
 Onphysical
- ★ With dopant diffusion: smooth transition region

| Simulating Monolithic Active Pixel Sensors Using Generic Doping Profiles | Adriana Simancas, 23.05.2023

Monte Carlo vs. TCAD - Transient See talk by M. A. D. R. Viera

Electrostatic potentials from TCAD can be used to generate weighting potentials

 \rightarrow Perform transient simulations with Allpix^2

- \star Lower computational cost
- ★ Reproduce many events
- ★ Allows use of Geant4 energy deposition (see next slide)

Comparison Allpix² vs. TCAD:

- ★ Same settings for charge carrier creation and mobility
- ★ Results in general agreement

Monte Carlo Simulations - Energy Deposition

Transient simulations comparing:

- ★ Linear energy deposition (TCAD)
 - Generates 63 electron-hole pairs per μ m \rightarrow most probable value
- **\star** Geant4 (Allpix²)
 - O Includes stochastic effects → takes into account all values from energy deposition distribution

Each signal is the average of 10 000 events, incident in the pixel corner

N-blanket layout, corner incidence

Simulation vs. Experimental Data

- ★ First comparison with test-beam data
- ★ Analog Pixel Test Structure (APTS - <u>W. Deng et al.</u>)
 - N-gap layout
 - 4x4 pixel matrix
 - 25 µm pitch
 - -4.8 V bias voltage
- ★ Similar trend in experimental data and simulations
- ★ More results presented at <u>BTTB11</u>

Experimental Data vs. Simulations

Summary & Conclusions

- ★ Description of simulation procedure for MAPS → generic toolbox for performing similar studies
- ★ Starting from generic doping profiles and semiconductor principles → realistic doping and electric field maps are produced with TCAD
- ★ Parameters are varied to find sensible values
- ★ Maps are imported into $Allpix^2 \rightarrow high-statistics$ Monte Carlo simulations are performed
- ★ Sensor performance observables are extracted and compared to data

Outlook

- \star Validation with experimental data
- ★ Add uncertainties on simulation results

Back-up

1D profile of diffusion from high to low doping under specific temperature and time conditions

Legend: Start Step

