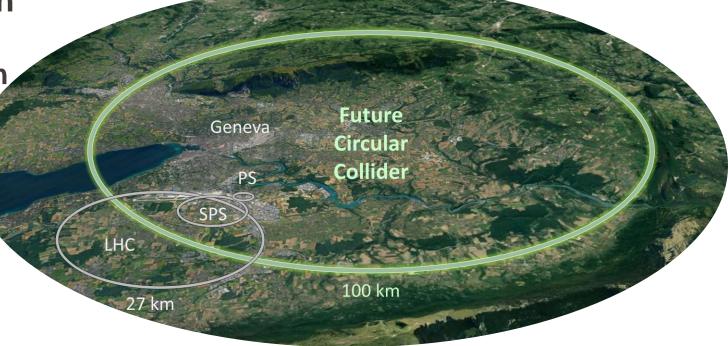
EPFL


Simulation Tools for Future Colliders

L. van Riesen-Haupt¹, T. Pieloni¹, G. Iadarola², P. Kicsiny¹, R. De Maria², X. Buffat²

¹EPF Lausanne; ² CERN

EPFL Motivation

- Challenges set out by Future Circular electron-positron Collider (FCC-ee)
 - Large and complex machine with many components
 - Challenging collision parameters and insertion region design
 - Tight alignment, manufacturing and correction tolerances
- Challenges unique to lepton colliders
 - E.g. synchrotron radiation effects
 - Recent focus in CERN on hadron machines
- Work with **experts** in the **community** to create **tools** for the broader community

EPFL Jungle of Simulations

- Many different types of simulations including different effects and specialised codes
- Types of simulations largely differ in
 - Number of particles simulated
 - Time/distance over which particles are simulated
 - Inclusion of interactions with other particles, beams, components of the machine
- Often interplay of different effects and simulations is essential
 - Get a full and accurate picture of machine behaviour
 - Requires **interfacing** between simulations
 - Efficient propagation of design changes to all codes

EPFL Examples of Simulations

Simulation type	Description	Purpose
Optics	Fast linear approximation of the motion of beam centroid	Lattice design and optimisaiton
Dynamic Aperture	Tracking large number of particles over many turns Establishing the dynamically stable regime	
Beam-Beam	Interaction of particles in opposite Study of the perturbation due collision colliding beams	
Collimation	Interaction of particles with matter and energy deposition Machine protection and experime background	
Electron Cloud	Interaction of beam and electrons Determining beam stability emitted from beam pipe	
Collective effects	Interaction between particles in beams and bunches	Understand collective instabilities and behaviour

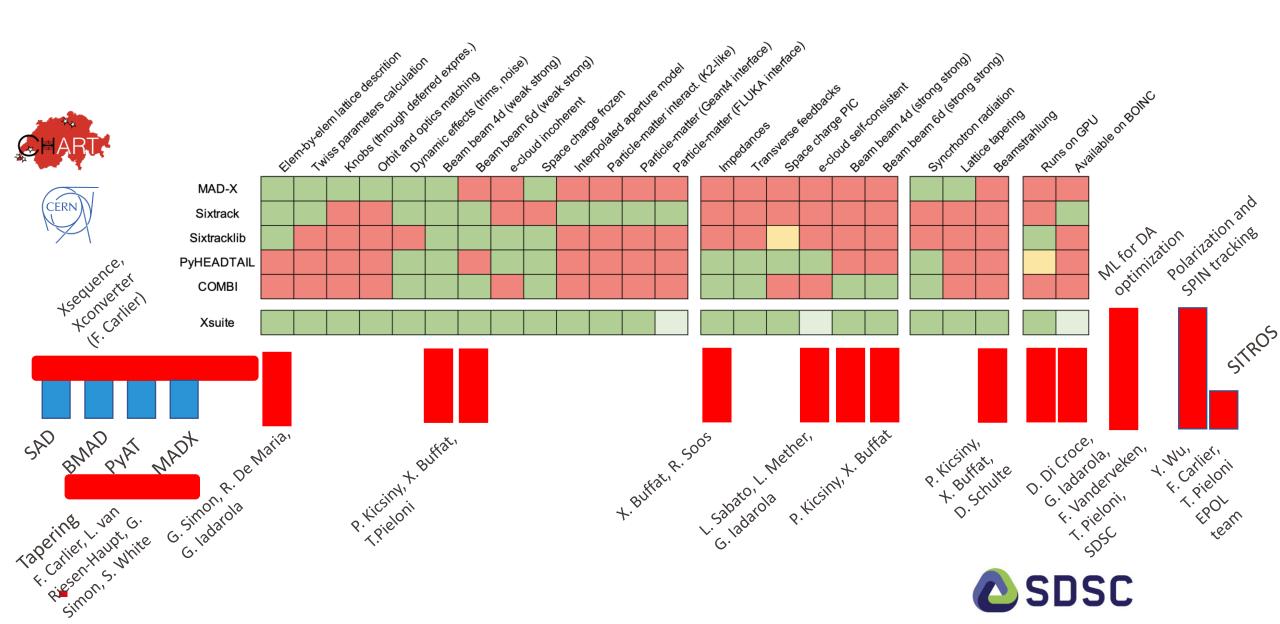
Simulation type	Number of Particles	Turns/Distance	Interaction with
Optics	Single particle	Single or few turns	Magnets, (RF cavities)
Dynamic Aperture	Thousands	Thousands of turns	Magnets, (RF cavities)
Beam-Beam	Thousands	Interaction point (short)	Particles in the colliding beam
Collimation	Thousands	Large number of turns	Magnets, solid matter, secondary particles
Electron Cloud	Large number of macroparticles	Along bunch, thousands of turns	Beam pipe, emitted electrons
Collective effects	Large number of particles	Within bunch/beam, over entire machine/many turns	Particles in the same beam

EPFL Jungle of Codes used for FCC-ee

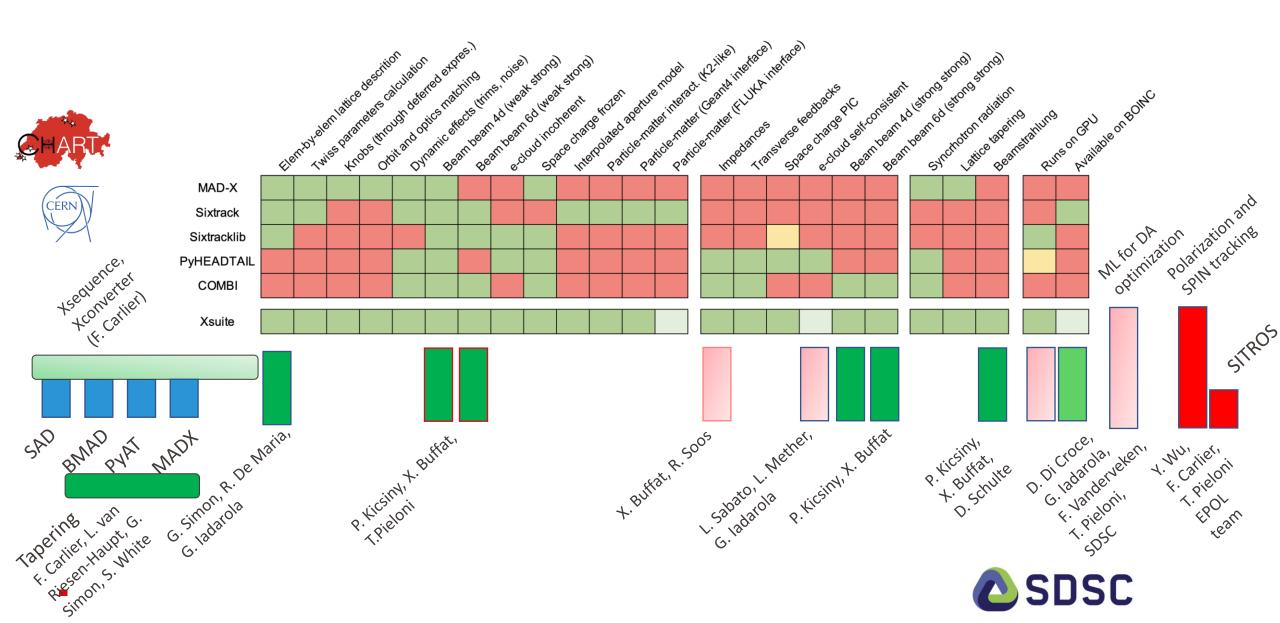
Domain	Organisation	Codes	
Optics and Tracking	CERN	MAD-X, MAD-X PTC, SixTrack, SixTrackLib, Xsuite, MAD-NG, Placet, CPyMAD	
	KEK	SAD	
	ESRF	PyAT	
	Cornell	BMAD	
	Manchester	MERLIN++	
	ANL	Elegant	
Beam-Beam	CERN	GUINEA PIG, COMBI	
	LBNL	BeamBeam3D	
	КЕК	BBSS	
	IHEP	IBB	
	BINP	LifeTrac	
Collective Effects	CERN	pyHEADTAIL, TRAIN, DELPHI	
Impedance Modeling	CERN	IW2D	
	Dassault systems	CST Studio	
Ecloud Simulations	CERN	PyECLOUD	
Vaccum	CERN	Synrad+	
Energy Deposition	CERN	FLUKA, MDISIM	
	Royal Holloway	BDSIM	

EPFL Sequence Converter and Manager

- Sequence manager and converter developed by EPFL
 - Efficient interfacing and conversion between codes
- XConverter
 - Convert to and from different codes
 - Modular approach via XSequence
- XSequence
 - Python based sequence manager
 - Backbone of XConverter
 - Allows for code independent lattice management and modification

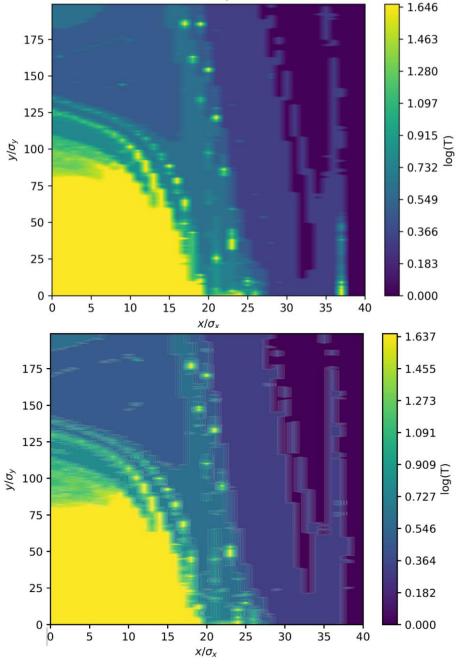


EPFL Swiss Army Knife -XSuite


Identified XSuite a software as cornerstone for software framework

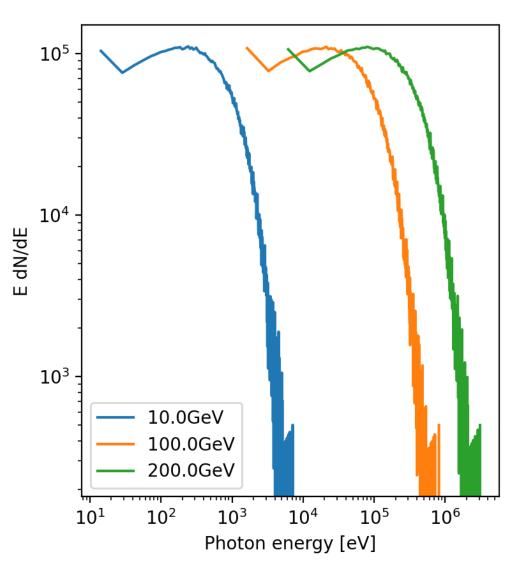
- Aims to cover a large range of functionality
- Written in **python** for easier interfacing
- Large and growing CERN community
- Aim to provide direct input relevant for FCC-ee study by
 - Implementing features
 - Benchmarking new features
 - Being first time users and inputting needs
- Conversions still relevant to convert to and from XSuite and all legacy codes
 - Also for benchmark studies
- Use software for meaningful contributions to FCC study

EPFL XSuite



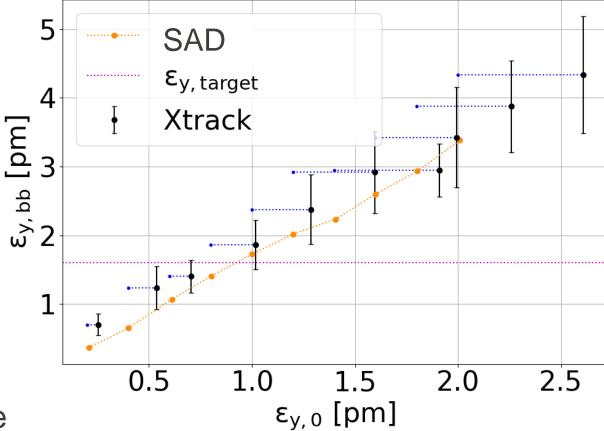
EPFL Great Progress

EPFL Consistency -Benchmarking


- Important to benchmark new tools with existing codes
 - Simple examples before multiple effects
 - Understand possible inconsistencies
- Extensive study benchmarking XSuite since this is a primary tool
 - **Optics** with radiation and tapering compared to optics codes (MADX,SAD)
 - **Dynamic** aperture with and without radiation (MADX, SAD, MADX-PTC)
 - Emittance from tracking
 - Compared to other tracking codes
 - Compared to matrix methods
 - Radiated photon spectrum

FCC-ee survival plot with radiation using SAD (top) and Xtrack (bottom)

EPFL Consistency -Benchmarking


- Important to benchmark new tools with existing codes
 - Simple examples before **multiple effects**
 - Understand possible inconsistencies
- Extensive study benchmarking XSuite since this is a primary tool
 - Optics with radiation and tapering compared to optics codes (MADX,SAD)
 - **Dynamic** aperture with and without radiation (MADX, SAD, MADX-PTC)
 - Emittance from tracking
 - Compared to other tracking codes
 - Compared to matrix methods
 - Radiated photon spectrum

Power spectrum of photons emitted in 2T dipole at different energies in XSuite

First Results: Optics, Beam-Beam and Emittance

- First example of "bringing it together"
 - Optimising optics of the machine
 - Including beam-beam effects
 - Tracking in lattice for emittance and beam-beam
- Full benchmarking with previous studies
- Many upcoming studies for FCC-ee
 - Tune spread of particles in beam
 - Dynamic aperture
 - Emittance evolution

Emittance increase due to beam-beam from tracking in XSuite for various lattice emittances compared to SAD results. (Preliminary)

EPFL Conclusion

- Large amount of different software used for FCC-ee and accelerators in general
 - Many different unique purposes
 - Dependent on specialised development and knowledge of few experts/labs
- Improved interoperability by
 - Facilitating conversion and model management
 - Contribute to the development of modern broader tools
 - Steer towards and use for FCC-ee purposes
 - Benchmark against established codes
 - Many meaningful contributions by CHART colleagues
- First studies using new tools underway contributing to the FCC-ee study