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Electron clouds

[1] G. Iadarola et al, 2018, Electron Cloud Effects

Depends on:
• Beam Chamber
• Beam Configuration
• Magnetic fields

Unwanted effects:
• Transverse instabilities
• Transverse emittance blow-up
• Particle losses
• Heat Loads
• Vacuum Degradation

September 7, 2023 e-cloud in Vlasov, S. Johannesson 4/22



Electron clouds

[1] G. Iadarola et al, 2018, Electron Cloud Effects

Depends on:
• Beam Chamber
• Beam Configuration
• Magnetic fields

Unwanted effects:
• Transverse instabilities
• Transverse emittance blow-up
• Particle losses
• Heat Loads
• Vacuum Degradation

September 7, 2023 e-cloud in Vlasov, S. Johannesson 4/22



Electron clouds

[1] G. Iadarola et al, 2018, Electron Cloud Effects

Depends on:
• Beam Chamber
• Beam Configuration
• Magnetic fields

Unwanted effects:
• Transverse instabilities
• Transverse emittance blow-up
• Particle losses
• Heat Loads
• Vacuum Degradation

September 7, 2023 e-cloud in Vlasov, S. Johannesson 4/22



Instabilities driven by e-cloud.

• Electron clouds can drive trans-
verse instabilities

• Electron clouds can drive trans-
verse instabilities

, which cannot
be mitigated by transverse feed-
back system due to strong intra-
bunch motion. [6] F. Zimmermann, 2004, Re-
view of Single bunch instabilities driven by electron cloud

LHC measurements, June 2022

• Conventional simulations using
macroparticle tracking together
with the PIC method for e-cloud
beam interaction, are very compu-
tationally heavy. [7] G. Iadarola. et al., 2017,
Evolution of Python Tools for the Simulation of Electron
Cloud Effects
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Instabilities driven by electron cloud
• Instabilities driven by impedance effects have been modelled using the

linearised Vlasov Equation, which identifies the Instability growth rate and
betatron frequency shift for each instability mode. [8] N. Mounet, 2017, Vlasov Solvers and
Macroparticle Simulations

• The calculation time is independent of the instability growth rate.
⇒ Possible to study slow instabilities!

Shifting from impedance forces to e-cloud forces in the Vlasov model requires:
• A more general description of forces, since e-cloud dipolar forces cannot

be modelled by conventional wakefields and impedances. [9] G. Rumolo and F.
Zimmermann, 2002, Electron Cloud simulations: beam instabilities and wakefields

• a betatron tune modulation along the longitudinal coordinate of the
bunch as a result of e-cloud forces. [6] F. Zimmermann, 2004, Review of Single bunch instabilities
driven by electron cloud

Previous attempts of using the Vlasov method to model e-cloud driven
instabilities have not included these points together. [10] K. Ohmi et al, 2001, Wake-Field and
Fast Head-Tail Instability Caused by an Electron Cloud., [11] E. Perevedentsev, 2002, Head-Tail Instability Caused by Electron Cloud
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The Linerized Vlasov Equation - introduction

• ψ0 is a distribution of particles where each individual particle obeys a
Hamiltonian H0.

• The Vlasov equation describes the collective motion of the distribution ψ0

• Introduce a perturbation, ∆H and ∆ψ, which means that the total
Hamiltonian is H = H0 + ∆H and the total distribution is ψ = ψ0 + ∆ψ

• This leads to the Linearized Vlasov Equation, which truncated to first
order and expressed with Poisson brackets is:

∂∆ψ
∂t + [∆ψ,H0] = −[ψ0,∆H] (1)

• The electron cloud forces are contained in ∆H
• The distortion ∆ψ is the impact of the perturbation and the unknown

[3] N. Mounet, 2018, Direct Vlasov Solvers
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The Linearized Vlasov Equation
∂∆ψ
∂t + [∆ψ,H0] = −[ψ0,∆H]

∂∆Ψ
∂t − ω0(Qx0 + ∆Q(r , ϕ)) ∂∆Ψ

∂θx
+ ωs

∂∆Ψ
∂ϕ

= − ηg0(r)
ωs m0γ

df0
dJx

√
2Jx R
Qx0

sin θx F coh
x (z, t)

H0 from equations of motion

∆H = − xF coh
x (z,t)
m0γv from inte-

grating Hamilton’s equations

switch to polar coordinates
(x , x ′, z, δ) → (Jx , θx , r , ϕ)

Factorize unpertubed
bunch distribution, ψ0 =
ηv
ω0

f0(Jx )g0(r)

reds are unknowns and greens come from e-cloud forces
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E-cloud in the Vlasov equation - diolar forces
Begin by describing the dipolar e-cloud forces:

Choose a set of sinusoid beam distortions, hn(z) where z is the position along
the bunch. The sinusoid test functions satisfy the orthogonality condition:∫

hn(z)hn′ (z) = H2
nδn,n′

Each distortion, hn, corresponds to a response function kn calculated from the
interaction with e-cloud using single-pass PIC simulations.

These calculations use the e-cloud in the superconducting quadrupoles of the
LHC for a beam energy of 450GeV.

[2] G. Iadarola, et. al. 2020, Linearized method for the study of transverse instabilities driven by electron clouds
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E-cloud in the Vlasov Equation - Dipolar Forces
Describe the transverse centroid along the bunch, x̄(z), as a linear combination
of test functions hn:

x̄(z) =
∞∑

n=0

anhn(z); an = 1
H2

n

∫
x̄(z)hn(z)dz (2)

The kick, ∆x ′, of arbitrary distribution x̄(z) is:

∆x ′(z) =
∞∑

n=0

ankn(z) (3) kn is the resulting electron cloud kick
from a bunch distortion hn.

The coherent force can be expressed from the transverse kick ∆x ′.
Assuming the force is distributed uniformly in the accelerator:

F coh
x (z, t) = m0γv 2

2πR ∆x ′ (4)

m0 is the proton mass, γ is the relativistic gamma, v is the velocity of the protons and R is the total radius of the LHC.
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from a bunch distortion hn.

The coherent force can be expressed from the transverse kick ∆x ′.
Assuming the force is distributed uniformly in the accelerator:

F coh
x (z, t) = m0γv 2

2πR ∆x ′ (4)

m0 is the proton mass, γ is the relativistic gamma, v is the velocity of the protons and R is the total radius of the LHC.
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E-cloud in Vlasov equation - Quadrupolar
forces

[2] G. Iadarola, et. al. 2020, Linearized method for the study
of transverse instabilities driven by electron clouds

Model detuning using a polynomial

∆Q(z) =
Np∑

n=0
Anzn (5)

Generalize by adding chromaticity

∆Q(z , δ) =
Np∑

n=0
Anzn + Bnδ

n (6)

Including only linear chromaticity:

∆Q(z , δ) = Q′δ +
Np∑

n=0
Anzn (7)
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Solving the Vlasov Equation - Ansatz of ∆ψ
Equation to solve:
∂∆Ψ
∂t − ω0(Qx0 + ∆Q(r , ϕ)) ∂∆Ψ

∂θx
+ ωs

∂∆Ψ
∂ϕ

= − ηg0(r)
ωs m0γ

df0
dJx

√
2Jx R
Qx0

sin θx F coh
x (z, t)

detuning from e-cloud and chromaticity dipolar forces from e-cloud

First ansatz:
∆ψ(Jx , θx , r , ϕ, t) =
ejΩt∆ψ(Jx , θx , r , ϕ).

Beam instabilities are
characterized by these
qualities.

tune shift,
( Re(Ω)
ω0

− Q0)/Qs

instability growth rate,
−Im(Ω)

After further calculations linerized Vlasov Equation becomes an eigenvalue
problem:

blm(Ω − Qx0ω0 − lωs) =
∑
l′m′

(Mlm,l′m′ + M̃lm,l′m′ )bl′m′ (8)

Unkowns in red and terms including electron cloud forces in green

ω0 is the angular revolution frequency, Q0 is the unperturbed tune and Qs is the synchrotron frequency
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e-cloud in LHC Quadrupoles, zero chromaticity

∆Qecloud(z, δ) = 0

∆Qecloud(z, δ) ̸= 0

benchmarked against macro-particle simulations using the same formalism of
e-cloud forces
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e-cloud in LHC Quadrupoles, zero chromaticity

∆Qecloud(z, δ) = 0 ∆Qecloud(z, δ) ̸= 0

Good agreement with MP simulations!
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e-cloud in LHC Quadrupoles, chromaticity = 15
∆Qecloud(z, δ) = 0

∆Qecloud(z, δ) ̸= 0

Good agreement with MP simulations when ∆Qecloud(z, δ) = 0.
For positive chromaticity, weak Vlasov modes are not visible in the
macro-particle simulations.
The tune shift of the Vlasov modes agree well with the macro-particle spectra.
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Measurements at the LHC
Measurements were conducted at conditions with high e-cloud for several
values of chromaticity.

Simulations predict a tune shift with a weak dependence on chromaticity.

This is confirmed by measurements.
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Measurements at the LHC

The growth rate of the macro-particle simulations approximately follow the
behavior of the measurements.

The macroparticle simulations are damped by incoherent mechanisms not
captured by the Vlasov model.
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Conclusions
• E-cloud driven instabilities have been implemented in the Vlasov

formalism by using generalized responses to model dipolar forces and a
detuning along the bunch to model quadrupolar forces.

• The same formalism of forces have been put into macro-particle
simulations which agrees with the Vlasov modes except at high positive
chromaticity, where the Vlasov approach predicts weak instabilities not
visible in the macro-particle simulations.

• Measurements also show a stabilizing effect with increasing chromaticity.
The growth rates can be replicated by macroparticle simulations using the
formalism of forces developed for the Vlasov approach.

Thank you for your attention!
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