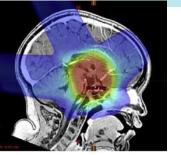
Compact Synchrotrons for Hadron Therapy: Development and Synergies with HEP Projects.

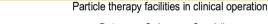
Elena Benedetto, SEEIIST Association 7/9/2023

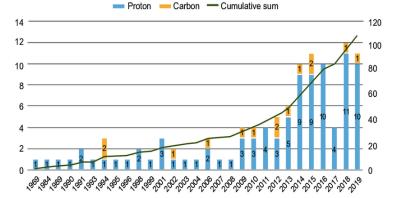
Joint Annual Meeting of the Swiss and Austrian Physical Society



Proton (hadron) radiation therapy

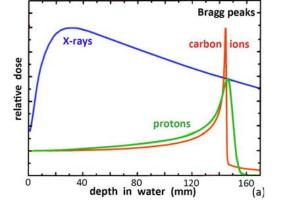
DOI:10.1016/j.ijrobp.2016.06.2446



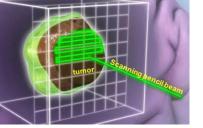


photons IMRT

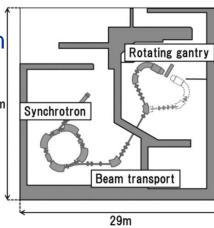
Bragg Peak: hadrons deposit energy @ specific depth, depending on the beam energy



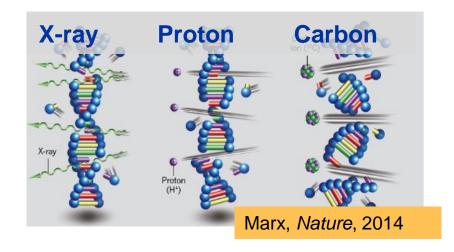
110 particle - proton therapy facilities,30 in Europe (Vs. 14'000 X-ray facilities)


IBA SynchroCyclotron

Proteus ONE



3D beam scanning


HITACHI Synchrotron

12-16 m

Carbon (and other) ions therapy

Single-strand breaks (easy to repair) vs. double-strand breaks (not reparable)

✓ 3x more damage (RBE)
 ✓ also in oxygen-depleted
 "radioresistant" tumours

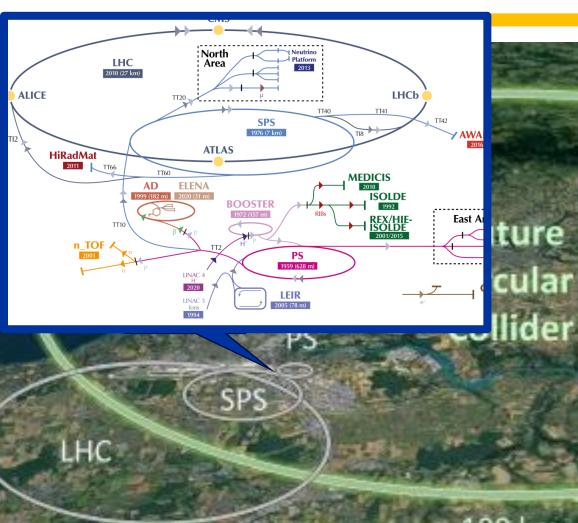
Helium and Oxygen ions also of interest for treatment

Range 3 mm to 300 mm in water-equivalent (Bragg Peak) Protons: 60 - 250 MeV ($B\rho = 2.42 \text{ Tm}$) Carbon: 100 - 430 MeV/u ($B\rho = 6.6 \text{ Tm}$) are difficult to bend

MedAustron, 25 m diameter synchrotron

Facility becomes larger and more expensive ~200 MEur

Heidelberg HIT C-ion gantry (600 tons)



@ CERN

Next Ion Medical Machine Study (NIMMS)

PIMMS: collaboration CERN, TERA, MedAustron, TDR in 2000

C-ion ring, 75 m circumference

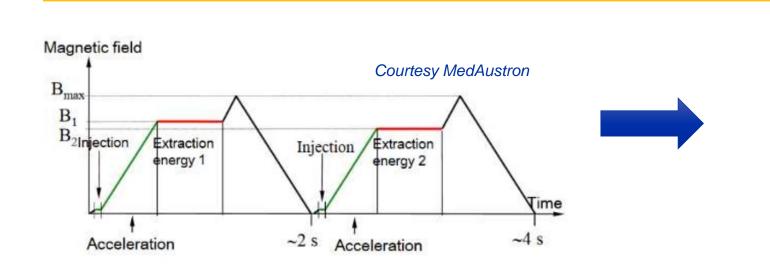
NIMMS: collaboration CERN, Tera-Care, SEEIIST, Riga U., et al., started 2018

- Higher (x 20) beam intensity stored: for flexible extraction (and FLASH)
- Reduce dimensions, weight (and cost) ~30 m length Super-Conducting magnets C-ion ring & gantry

Helium-ion synchrotron w. warm magnets

1) Higher (x20) intensity

- SEEIIST: The South East European International Institute for Sustainable Technologies
- Science4peace project
- Research and therapy with ions: p, He, C, O,...up to Ar
- Flexible extraction modality
 - > multi-energy slow resonant extraction
 - FLASH: high dose, high rate
- Baseline layout is a PIMMS synchrotron (like CNAO/MedAustron)
- Option of a compact SC-magnet synchrotron



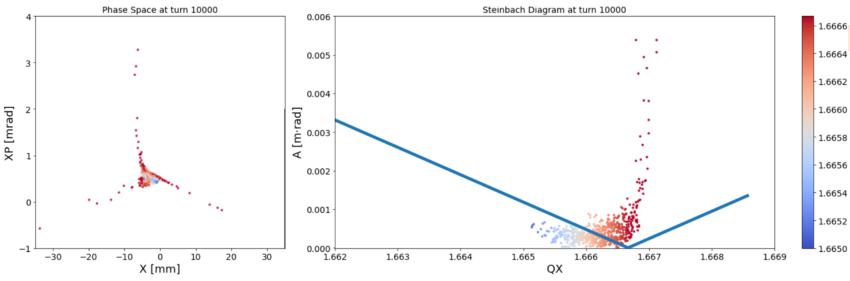
(*)To deliver 2 Gy to 1 liter in one cycle

		р	Не	С	
	Intensity	2.6 e11	8.2 e10	2.0 e10	
	Injection Energy (MeV/u)	7-10	5	5	
	Extract Energy (MeV/u)	60-250	60-250	100-430	
	Beam rigidity max (Tm)	2.42	4.85	6.62	
	Synchrotron diameter (m)		~25m		
	Spill duration (s)		0.1 - 60		
	Spill ripple @1 kHz		<1.5		

Delivery of 2 Gy in a 1-liter tumour: HOW?

TODAY: Every change of energy \rightarrow A different cycle

time


TODAY in Japan: Multi-Energy Extraction (going down or up) within same cycle

TOMORROW(?) ... deliver the entire *high intensity* beam in <500 ms for FLASH irradiation

Slow extraction on the 3rd order resonance

Simulations are done with X-Suite

Spill Quality

- Slow extraction over 1-10 s
- Spill is 1e8 particles/s

FLASH regime:

How to slow-extract 1e10 particles in <500s?

Multi-turn injection of 2e10 C-ions

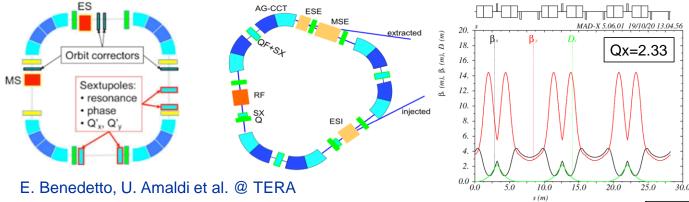
ECR source ~200 uA C+4

Next generation ECR (e.g. AISHA, Catania) ~600 uA C+4 (in 0.3 mm mrad rms)

Injecting @ 5 MeV/u in a 70 m circumference Assume 90% (high!) efficiency from source to injection \rightarrow 13 "effective turns" needed (30 for the compact 30m)

Simulations using a \sim toy model, Proper tracking with X-suite \rightarrow todo

- MT injection has ~60% efficiency
- Old Linac2 injection in the CERN PS-Booster had total of 15 turns\



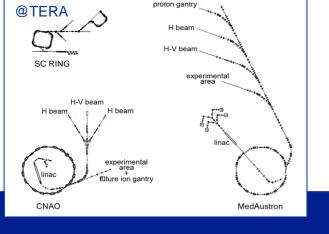
for He-ions (source 1mA)

~similar #turns

2) C-ions synchrotron w. SC magnets (AG-CCT)

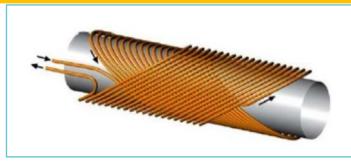
Compact (C=27m) SC-magnets AG-CCT up to 3.5 T

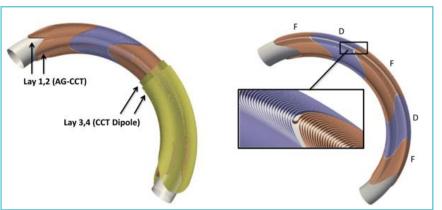
AG-CCT, i.e. focussing inside the dipole, means smaller β, smaller beam size and apertures


- Dispersion and tune varied with tuning quads
- **RF-KO** Slow extraction on 3rd order resonance

0.5 liter

3.0 20.0 25.0 30.0 eliver 2 Gy to a 1-liter in one cycle


· · · · · · · · · · · · · · · · · · ·	, , , , , , , , , , , , , , , , , , ,		
	р	Не	С
Intensity	2.6 e11	8.2 e10	2.0 e10
Injection Energy (MeV/u)	7-10	5	5
Extract Energy (MeV/u)	60-250	60-250	100-430
Beam rigidity max (Tm)	2.42	4.85	6.62
Synchrotron size (m)		~10m	
Spill duration (s)		0.1 - 60	
Spill ripple @1 kHz		<1.5	



SC magnet Canted Cosine Theta (CCT)

Tilted solenoids → Pure dipole field

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 27, NO. 4, JUNE 2017

Design of an Achromatic Superconducting Magnet for a Proton Therapy Gantry

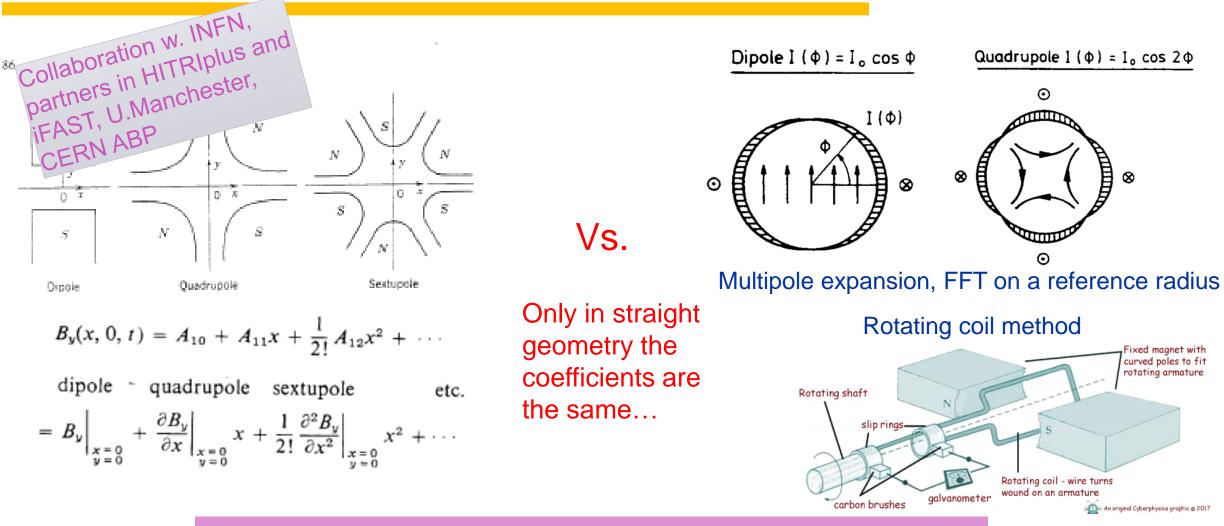

L. Brouwer, S. Caspi, R. Hafalia, A. Hodgkinson, S. Prestemon, D. Robin, and W. Wan

Adding 2 extra layers (different winding patterns)

→ Nested quadrupoles

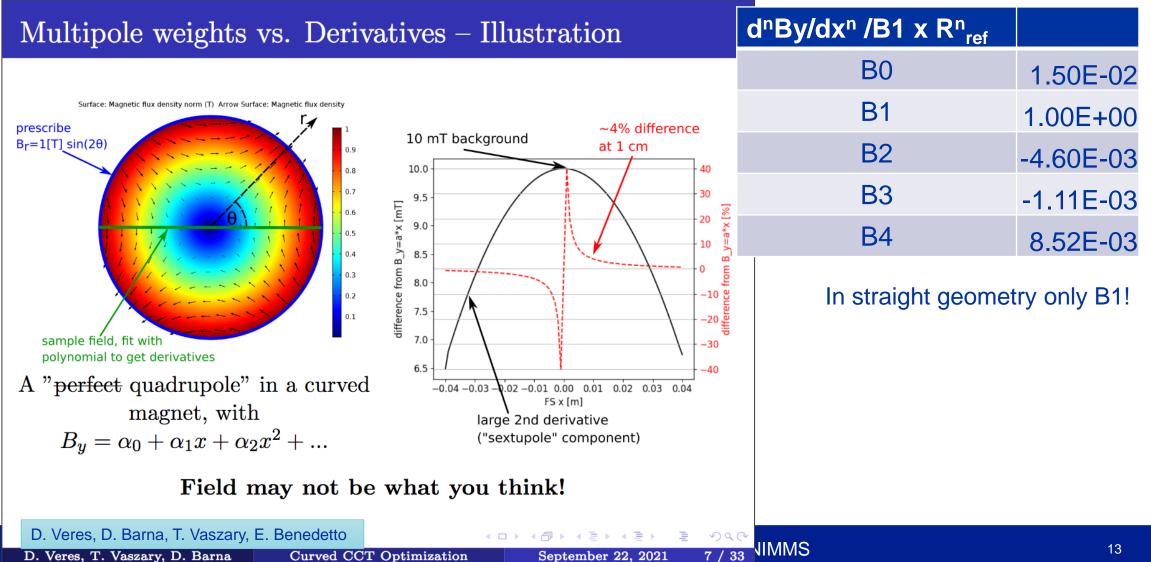
→ Alternating Gradients (AG)

Strongly curved magnets B_{max} = 3.5 T $\rightarrow \rho$ = 1.90 m B_{max} = 4.0 T $\rightarrow \rho$ = 1.65 m

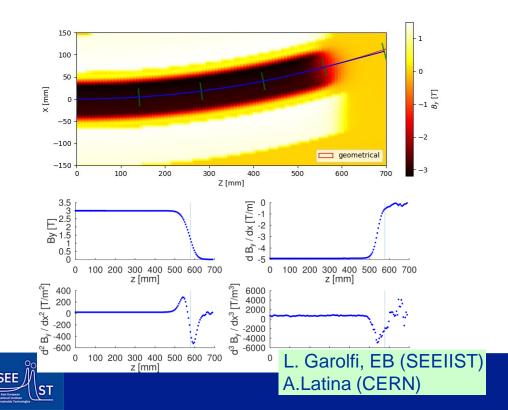


Prototypes will be built within 2 EU projects: HITRIplus and iFAST

Field Quality for curved magnets (1/3) HITE fiel


EB and D. Barna, WG – field quality

✓ We define FQ using field derivatives, not multipoles


EB and D. Barna, WG -Field Quality for curved magnets (2/3) HITP field quality

13

Field Quality for curved magnets (3/3)

- ✓ Interface optics Vs magnets
- Fringe fields modeling (ongoing) → challenge the current approximation in optics codes

PhD student (w. R. De Maria, CERN) will derive and implement tracking in X-suite:

- Strongly curved, short magnets
- FCC-ee solenoid (trajectories are curved)

3) Helium-ion warm synchrotron

9/7/2023

• He is interesting in-between protons and C-ions:

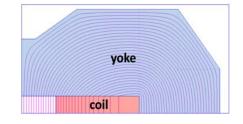
- sharper Bragg peak and fall-off to protons,
- less scattering
- less nuclear fragmentation compared to carbon.

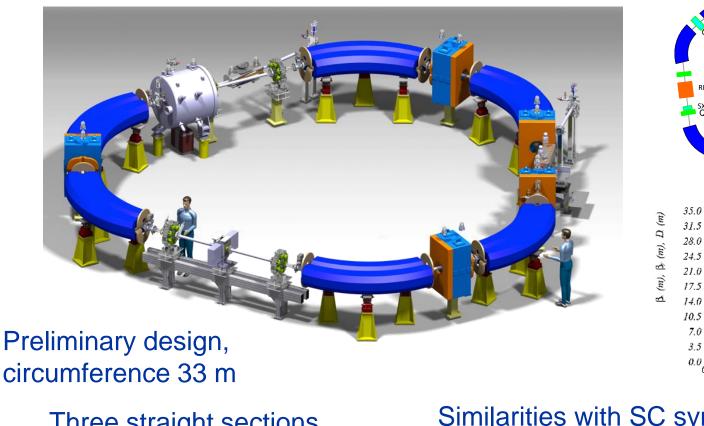
E. Bene

- lower neutron dose than protons or carbon.
- improved RBE to protons, less damaging LET than carbon.

250 MeV/ (R=12 cm

	р	Не	С		
Intensity	2.6 e11	8.2 e10	2.0 e10		
Injection Energy (MeV/u)	7-10	5	5		
Extract Energy (MeV/u)	60-250	60-250	100-430		
Beam rigidity max (Tm)	2.42	4.85	6.62		
Synchrotron diameter (m)		~10m			
Spill duration (s)	0.1 - 60				
Spill ripple @1 kHz		<1.5			




The Helium synchrotron

Design based on CERN experience in small synchrotrons (LEAR, LEIR, ELENA)

Proven technology, compact & upgradable

Dipole field of 1.65 T with window-frame magnets.

Injector linac at 352.2 MHz, based on CERN Linac4 design.

Three straight sections (injection, extraction, RF)

Similarities with SC synchrotron for C- ions, e.g. in the straight sections

21.0

s (m)

Developments on the next generation medical synchrotrons Pushing intensity & B-field (Super Conducting magnets)

...yet, this is a MEDICAL device!

Contact: <u>Elena.Benedetto@cern.ch</u>.

South East European International Institute for Sustainable Technologies

A consortium of countries in the South Fast Europe to build a facility for **therapy & research**.

Fall 2016: Proposed by H. Schopper and supported by S. Damjanovic (Montenegro Minister of Science)

Mar. 2018: Medical facility chosen (U. Amaldi et al, based on CNAO-MED 3.0)

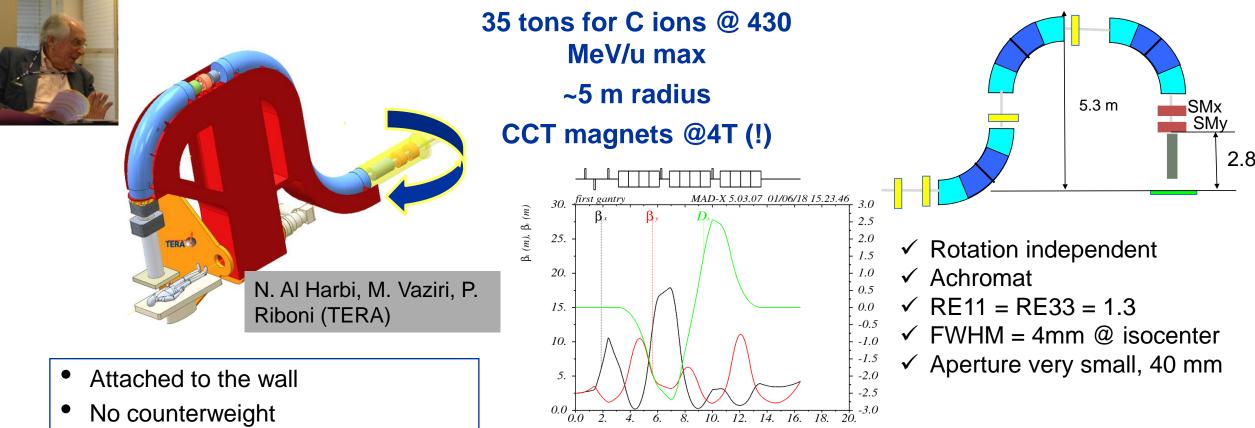
Feb 2019-Apr 2021: CERN (M. Vretenar) hosts the accelerator design – collaboration with TERA

Apr 2021: TERA people move to SEEIIST, with the start of HITRIplus

Higher 20x beam inten full beam (2Gy for 1lite Flexible dose delivery

South East Europe International Institute for Sustainable Technolog U. Amaldi^a, J. Balosso^b, M. Dosanjh^c, Ph. Lambin^d, J. Overgaard^e,

Palermo Ionian Sea	Injection/Acceleration	Unit					
Ann	Particle after stripping	p $^{4}\text{He}^{2+}$ $^{12}\text{C}^{6+}$ $^{16}\text{O8+}$ MeV/u 7 at injection Tm 0.38 0.76 0.76 0.76 range (**) MeV/u $^{60-250}$ $^{60-250}$ $^{60-250}$ $^{100-430}$ $^{100-430}$ at highest /) Tm $^{2.42}$ $^{4.85}$ $^{6.62}$ $^{6.62}$	³⁶ Ar ¹⁶⁺				
TERA Foundation, Novara, Italy Department of Radiotherapy, University Hospital of Grenoble, Grenoble, Franc CERN, Geneva, Switzerland	Energy	MeV/u			7		
	Magnetic rigidity at injection	Tm	0.38	0.76	0.76	0.76	0.86
^d Maastricht University, Maastricht, The Netherlands	Extraction energy range (**)				100 - 430	100 - 430	200 - 350
Clinic of Oncology and Radiotherapy, Podgorica, Montenegro	Magnetic rigidity at highest energy (for therapy)	Tm	2.42	4.85	6.62	6.62	6.62
	Maximum nominal field	Т	1.5				
	Maximum number of particles per cycle		2.6 · 10 ¹¹	$8.2 \cdot 10^{10}$	$2\cdot 10^{10}$	$1.4 \cdot 10^{10}$	$5 \cdot 10^{9}$
•	Ramp-up rate	Tm/s	<10				
	Ramp-down time of magnets	S	1				
	Spill ripple, intensity ratio I _{max} /I _{mean} (average on 1 ms)		< 1.5				
	Slow extraction spill duration with multi-energy	s	0.1 - 60				


SEEIIST

A Facility for Tumour Hadron Therapy and Biomedical Research

in South-Eastern Europe

S. Rossi^f, M. Scholz^g and B. Singers Sørensen^h with the collaboration of A. Celebicⁱ

Compact ion gantry with unconventional support

2.

8.

s(m)

6.

4.

10.

-3.0

12. 14. 16. 18. 20.

- No counterweight
- Electric motor with 5-stages planetary gear
- Magnets are structural elements