

Nicolas Vallis (PSI/EPFL) on behalf of the P³ team

The P³ Experiment: e+ Source Demonstrator for Future Lepton Colliders

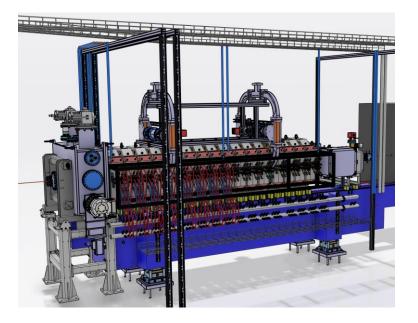
Swiss and Austrian Physical Societies Joint Meeting - 7 September 2023

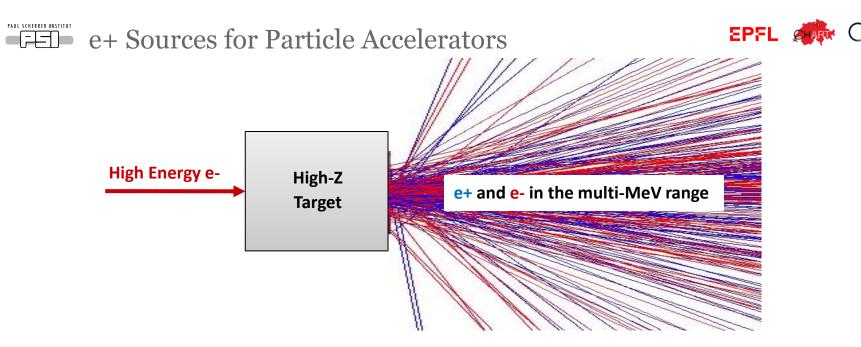
Outline

Introduction

I. Technology Overview

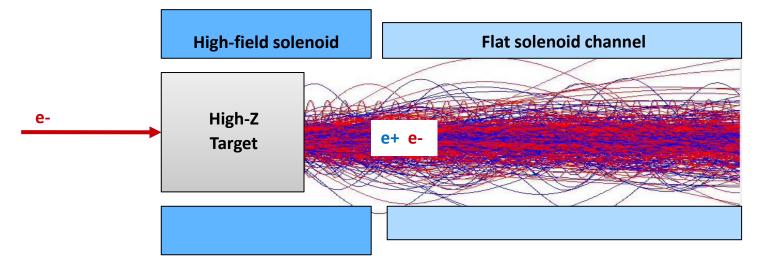
II. Beam Dynamics


III. Beam Diagnostics


Final Remarks

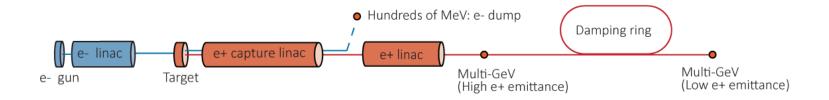
The P³ Experiment

- P³ or P-cubed stands for the PSI Positron
 Production experiment
- It is a e+ source demonstrator with potential to improve the present state-of-the-art e+ yield by an order of magnitude -normalized to primary e- energy-.
- The SwissFEL facility will host the experiment according to schedule- in 2026:
 - Technical design of experiment near completion
 - Installation works ongoing
- P³ is framed in the FCC-ee injector study, driven by the luminosity requirements of future colliders.



- Almost universally based on e+e- pair production
- Driven by high energy e- beams interacting with high-Z targets
- Despite high yields, beam quality is significantly lower than that provided by equivalent e- gun:
 - High transverse emittance
 - High Energy Spread

e+ Sources for Particle Accelerators (II)



- Solenoids are the standard form of e+ collection. Typically:
 - Strong peak fields around Target
 - Moderately strong plateau along capture linac

- e+ linacs must transport great emittances up to the damping ring, where the e+ emittance is radiation damped
- Effective e+ yield is computed at the DR:

$$Yield = \frac{Ne^+ \ accepted \ by \ DR}{Ne^- \ primary}$$

• All preceding e+ machines have provided low transmission rates from target to DR due to high emittance and energy spread

- High e+ yield at DR is enabled to great extent by:
 - High e- energy
 - Strong solenoid fields around target and along capture linac
 - Large aperture

	SLC (SLAC)	SuperKEKB (KEK)
	1989 - 1998	ca. 2014 -
Primary e- energy [GeV]	30 - 33	3.5
Max. sol. field at Target [T]	5.5	3.5
Avg. sol. field along linac [T]	0.5	0.4
Min. RF cavity aperture [mm]	18	30
e+ yield at target exit	~30	~8
Max. meas. e+ yield at DR	~2.5	~0.4

– J. E. Clendenin, High-Yield Positron Systems for Linear Colliders, in Proc. PAC'89, Chicago, USA (1989), pp. 1107–1112

- Chaikovska et al., Positron sources: from conventional to advanced accelerator concepts-based colliders, JINST, 17, P05015 (2022)

- SLAC Linear Collider Design Handbook, SLAC-R-714 (1984).
- Akai, K. Furukawa and H. Koiso, SuperKEKB Collider, Nucl. Instrum. MethodsPhys. Res., Sect. A 907, 188 (2018).

 T. Suwada et al., First simultaneous detection of electron and positron bunches at the positron capture section of the SuperKEKB factory, Sci Rep 11, 12751 (2021).

- High e+ yield at DR is enabled to great extent by:
 - High e- energy
 - Strong solenoid fields around target and along capture linac
 - Large aperture

	SLC (SLAC)	SuperKEKB (KEK)	P ³ (PSI)
	1989 - 1998	ca. 2014 -	ca. 2026
Primary e- energy [GeV]	30 - 33	3.5	6
Max. sol. field at Target [T]	5.5	3.5	12.7
Avg. sol. field along linac [T]	0.5	0.4	0.45
Min. RF cavity aperture [mm]	18	30	40
e+ yield at target exit	~30	~8	13.77
Max. meas. e+ yield at DR	~2.5	~0.4	~5.64

*expected at Faraday Cups

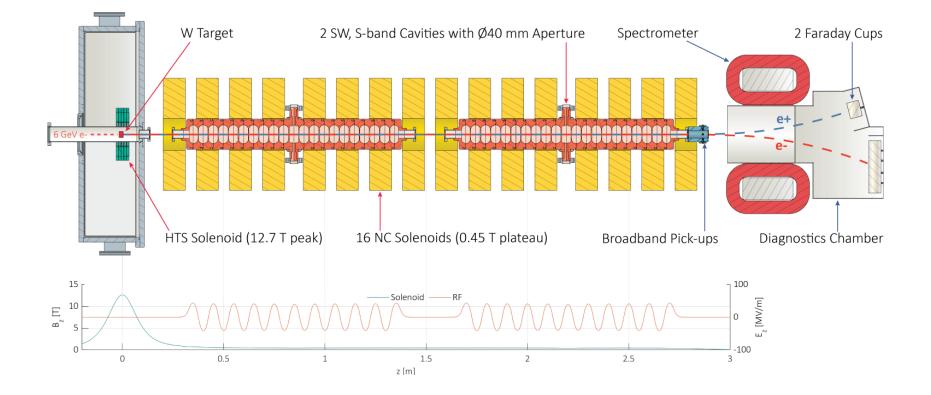
– J. E. Clendenin, High-Yield Positron Systems for Linear Colliders, in Proc. PAC'89, Chicago, USA (1989), pp. 1107–1112

Chaikovska et al., Positron sources: from conventional to advanced accelerator concepts-based colliders, JINST, 17, P05015 (2022)

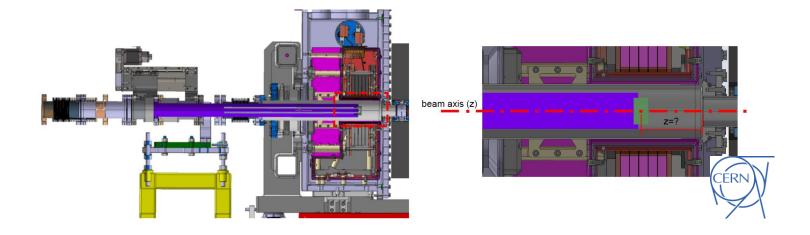
- SLAC Linear Collider Design Handbook, SLAC-R-714 (1984).
- Akai, K. Furukawa and H. Koiso, SuperKEKB Collider, Nucl. Instrum. MethodsPhys. Res., Sect. A 907, 188 (2018).

 T. Suwada et al., First simultaneous detection of electron and positron bunches at the positron capture section of the SuperKEKB factory, Sci Rep 11, 12751 (2021).

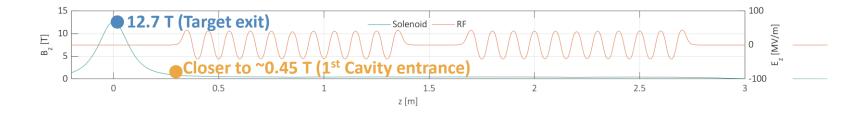
I. P3 Technology Overview

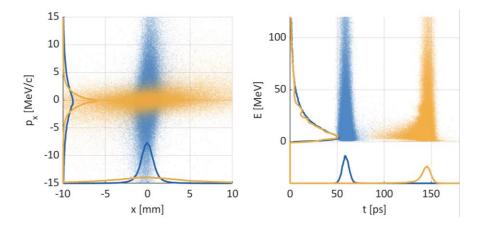

1. e+ Capture Section

2. Target Insertion Device (In collaboration w/ CERN)

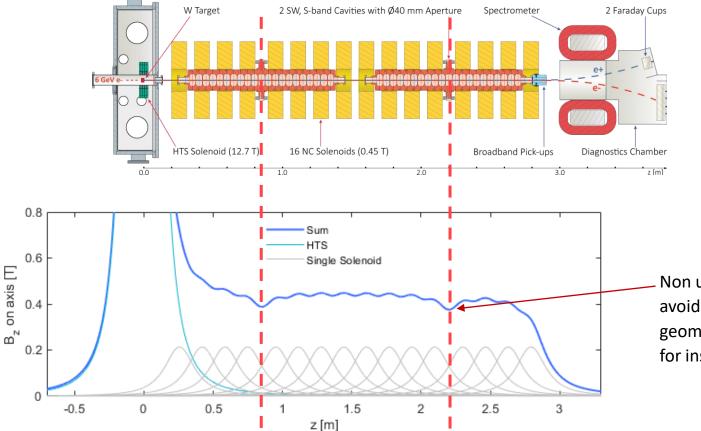

The P³ Experiment Layout

- Z position of target has a great impact on final e+ yield.
- A motorized system will allow for moving the target in the z axis
- +/- 50 mm stroke from nominal position (~Center of the HTS coils)

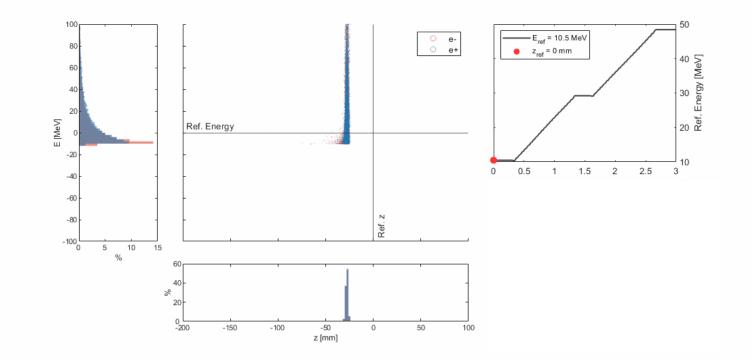

II. Beam Dynamics


1. Transverse

2. Longitudinal



Target exit	1 st RF Cav.
2754	2334
13.77	11.67
1.1	6.2
7.1	2.7
11676	12016
5.7	11.3
122	2.8
	2754 13.77 1.1 7.1 11676 5.7



Non uniformities must be avoided. Constraint by physical geometry (e.g. waveguides, space for installation, etc.)

RF fields will bunch consecutive e+ and e- over many buckets. First two buckets will concentrate most e+ and e- population.

Longitudinal Beam Dynamics (II)

2 figures of merit considered for RF phase optimization

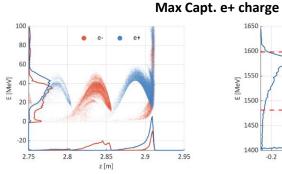
1. Capt. e+ charge

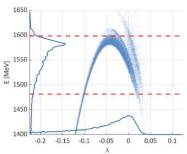
2. e+ Yield at FCC-ee DR

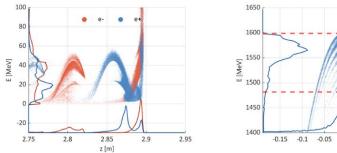
EPFL

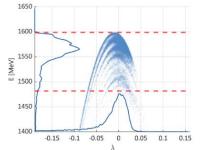
- Real, measurable quantity
- Computed through simulations at the exit of 2nd cavity

- Correction factor: will provide an equivalence with FCC-ee
- Particle tracking simulation extended to 200 MeV, or 10 RF cavities
- Analytical transformation of longitudinal e+ space up to 1.54 GeV
- +/- 3.8% filter in energy applied.


Working point 1, $\phi = (120, -70)$ **Working point 2**, $\phi = (70, -110)$ provides Max Capt. e+ charge provides Max. Yield at FCC-ee DR -180 -180 4.5 1200 -150 -150 4 -120 -120 -90 -90 1100 3.5 -60 -60 3 -30 -30 1000 ϕ_2 $\phi_2^{}$ WP1 2.5 30 30 900 60 2 60 90 90 1.5 120 120 800 150 150 1 180 180 60 150 30 60 6 120 150 180 180 150 120 -90 -<u>6</u>0 30 0 30 90 120 180 180 120 6-60 30 15(ϕ_1


Note: RF phases above are arbitrary and have no particular physical significance (e.g. crest, zero crossing) due to large beam spread.

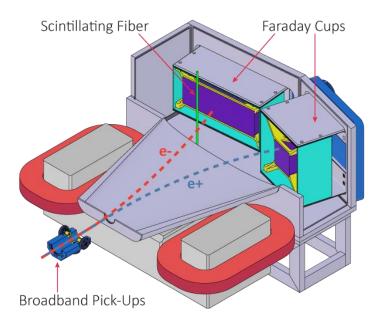

Working point 1, $\phi = (120, -70)$ provides



Working point 2, $\phi = (70, -110)$ provides Max. Yield at FCC-ee DR

		At 2 nd Cav. Exit	At FCC-ee DR
WP1	Yield [Ne+/Ne-]	6.23	3.84
φ = (120, -70)	e+ Charge [pC]	1246	-
WP2 φ = (70, -110)	Yield [Ne+/Ne-]	5.77	4.64
	e+ Charge [pC]	1153	-

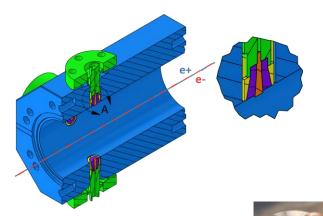
- WP1 provides highest capt. Efficiency
- WP2 provides a better energy compression.



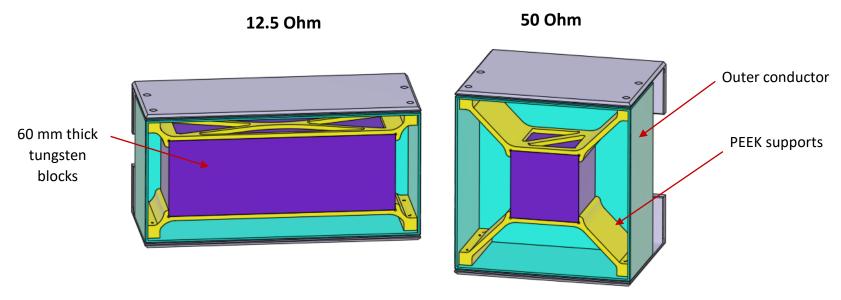
III. Beam Diagnostics

1. Broadband Pick-ups

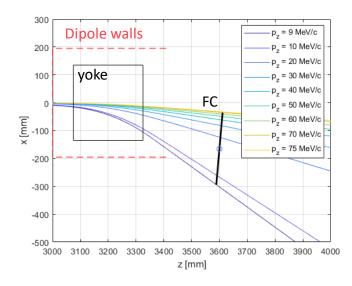
2. Faraday Cups


3. Scintillating Detectors

Beam Diagnostics: BBPs



- An arrangement of 4 broadband pickups will detect the time structure of the e+e- bunches after 2nd cavity
- typical distribution will consist of alternating e+ and e- bunches of 33 ps length, and separated by 167 ps (half S-band period)
- Two chambers assembled based on 27 GHz and 65 GHz pick-up arrangements.


- Two coaxial Faraday cups will measure e+ and e- charge separately
- Based on two different principles, and different impedances. One goal: Measure a highly transverse spread beam

EPFL

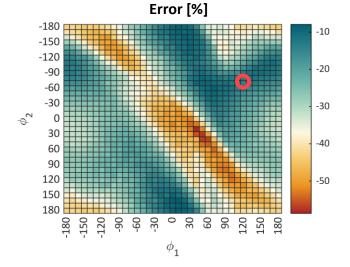
12.5 Ohm

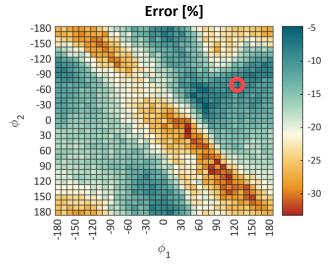
 Large transverse size (260x90 mm) will capture particles in a wide energy range (9 – 75 MeV).

50 Ohm

- More compact size (80x80 mm) will not be able to capture broad energy spectra in a single shot.
- Measurement is done in 6 separate readings.

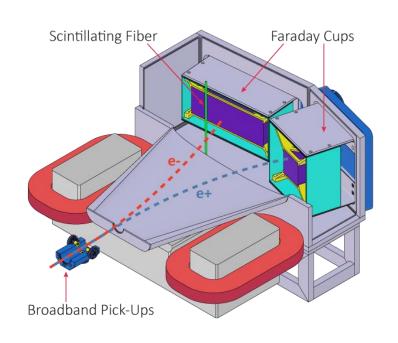
	Spectrom. strength [T]	Meas. E. range [MeV]
$12.5 \ \Omega \ FC$	0.053	9 - 75
	0.212	50 - 90
	0.120	28 - 50
$50 \ \Omega \ FC$	0.068	16 - 28
	0.038	9 - 16
	0.021	5 - 9
	0.012	3 - 5


FCC



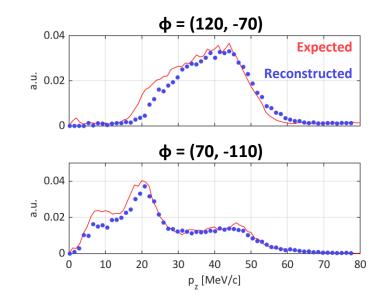
50 Ohm

@ WP1 Phi = (120, -70):


- 1246 pC expected
- 1077 pC measured
- Error = -13.6 %

@ WP1 Phi = (120, -70):

- 1246 pC expected
- 1129 pC measured
- Error = -9.4 %

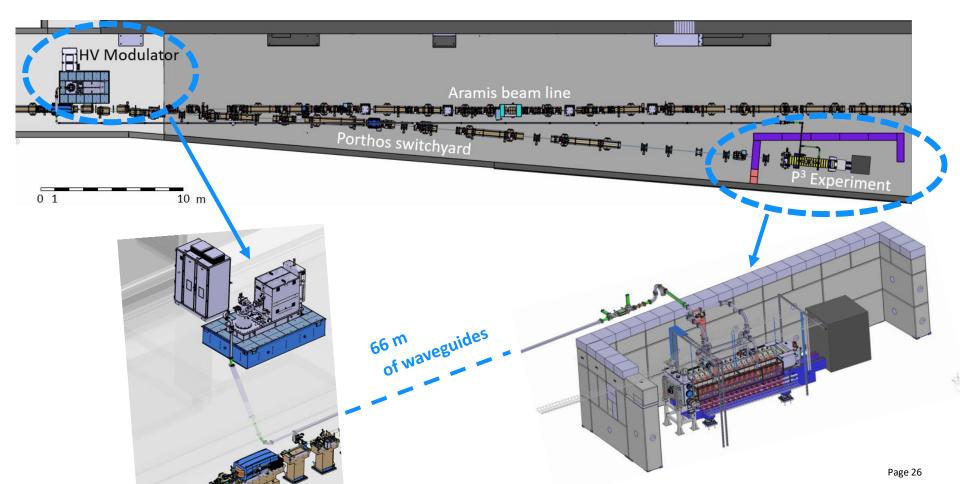

Beam Diagnostics: Scintillating Fibers

- 61 readings: from 0 to 0.3 T, step of 0.005 T
- Fiber at z = 350, x = -150 mm (w.r.t center of dipole)

EPFL

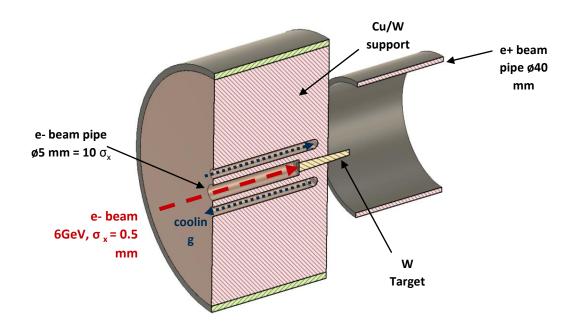
• Reconstruction of 2 RF WPs of interest

FCC



Final Remarks

General Status Overview


Concept design **Engineering in progress**

Dhysics Studios	Parameter Optimization	Complete	
Physics Studies	Conical Targets Study	In progress	
	HTS Solenoids	Design complete, components ordered	
Capture Section	2 RF Cavities	Ordered, cups delivered	
	16 NC Solenoids	Design complete, waiting for offers	
	Broadband Pick-ups	Assembled at PSI, tests with beam at CERN Nov. 23	
	Faraday Cups	Mechanical design in progress	
Diagnostics	Scintillating Fibers	Location defined, technical design to be developed	
	Diagnostics Chamber	Mechanical design in progress, to be reviewed with diagnostics team	
	Spectrometer	Mechanical modification design in progress	
	Klystron-Modulator system	Procurement of key components in progress	
Installation at	Waveguide Network	Waveguide network layout complete. Most waveguide components borrowed from CERN	
SwissFEL	Porthos Switchyard	Design complete, components ordered and partially delivered, preliminary installation works	
	Radiation Protection	Study complete, to be discussed with BAG	

Conical Targets for e+ Production

- e+ through conical converter studies is under study. Basic principles:
 - Part of the target protruding in vacuum
 - Most secondary particles emerge from de sides
- Preliminary studies indicate a yield increase in the FCC-ee DR of at least +70% with respect to baseline
- Thermo-mechanical studies in progress

The P³ Experiment: A Positron Source Demonstrator for Future Lepton Colliders

N. Vallis,^{*} P. Craievich, M. Schär, R. Zennaro, B. Auchmann,[†] H.H. Braun, M.I. Besana, M. Duda, R. Fortunati, H. Garcia-Rodrigues, D. Hauenstein, R. Ischebeck, E. Ismaili, P. Juranić, J. Kosse, A. Magazinik,[†] F. Marcellini, T.U. Michlmayr, S. Müller, M. Pedrozzi, R. Rotundo, G.L. Orlandi, M. Seidel,^{*} N. Strohmaier, and M. Zykova Paul Scherrer Institut, Villigen, Switzerland[‡] (Dated: September 1, 2023)

The PSI Positron Production (P^3 or P-cubed) experiment is a demonstrator for an electron-driven positron source and capture system with potential to improve by an order of magnitude the stateof-the-art positron yield normalized to the drive linac energy. The experiment is framed in the FCC-ee injector study and will be hosted in the SwissFEL facility at the Paul Scherrer Institute in Switzerland. This paper is an overview of the P^3 design at an advanced stage, with a particular emphasis on a novel positron capture system and its associated beam dynamics. Additionally, a concept for the experiment diagnostics is presented, as well as the key points of the ongoing installation works.

- The P3 design is at an advanced stage:
 - Capture section technical design complete and partially ordered
 - Diagnostics mechanical design in progress
- Core physics studies complete:
 - e+ production, transverse and longitudinal dynamics
 - 2 RF working points of interest found
- Preliminary error studies on Faraday Cups -> Yield of 5.64 would be detected
- Installation works at SwissFEL currently on schedule Complete in 2025
- Operation in 2026

The P-cubed core team:

P. Craievich, D. Hauenstein, M. Schär, N. Strohmaier, N. Vallis, R. Zennaro, M. Zykova

and

B. Auchmann, H.H. Braun, M.I. Besana, M. Duda, R. Fortunati,

H. Garcia-Rodrigues, D. Hauenstein, R. Ischebeck, E. Ismaili, P. Juranic, J. Kosse, A. Magazinik, F. Marcellini, T.U. Michlmayr, S. Muller, M. Pedrozzi, R. Rotundo, G.L. Orlandi, M. Seidel

and colleagues from the RF Section and other technical groups participating in the experiment installation

M. Calviani, J.L. Grenard, R. Mena-Andrade, A. Perillo-Marcone and colleagues from CERN, IJCLab, INFN and KEK and the rest of the FCC collaboration

Prof. Mike Seidel (EPFL)

This work was done under the auspices of CHART (Swiss Accelerator Research and Technology, chart.ch)

ÊRN

