

Recent improvement in the infrared thermography diagnostic of TCV

Martim Zurita

with Claudia Colandrea, Holger Reimerdes, Dmytry Mykytchuk, Marta Pedrini, and the TCV team

Joint Annual Meeting of the Swiss & Austrian Physical Societies, 8 September 2023, Universität Basel, Switzerland

1.6 m

Plasmas and tokamaks

- Plasmas are ionised gases
- Tokamaks are devices that confine plasmas using magnetic fields
- The Tokamak à Configuration Variable (TCV) is located at EPFL

TCV interior during operation. Photo by Curdin T. Wüthrich.

VIR

Cross

section

Window

R [m]

Relay

optics

0.6

Infrared thermography in TCV [1]

 Infrared thermography: images infrared radiation to get surface temperature

- Vertical infrared (VIR) camera: measures temperature on the tokamak floor
- Horizontal infrared (HIR) camera: measures temperature on the tokamak inner wall

[1] Roberto Maurizio's PhD thesis, EPFL (2020)

M. Zurita | SPS conference | 8 Sep. 2023

Infrared thermography in TCV [1]

- Infrared thermography: images infrared radiation to get surface temperature
- Plasma is almost transparent in the infrared range measured by the cameras

[1] Roberto Maurizio's PhD thesis, EPFL (2020)

Infrared thermography (IR) workflow to measure power impinging on the wall

Ref. shots: power reaching inner wall

Experiments (shots) with same configurations were analysed

Power measured by HIR was approximately constant

R [m]

 Power measured by VIR started decreasing with time when the window changed!

VIR

Window

Components of the IR camera signal

Components of the IR camera signal, N:

$$N_{counts} = a_{HT} \Delta t_{int} I_{bb}(T) + B_{HT}(\Delta t_{int})$$

- N_{counts}: camera signal [counts]
- Δt_{int}: camera integration time (adjustable) [ms]
- I_{bb}: black body radiation intensity [sr⁻¹m⁻³]
- T: Tile temperature [K or °C]
- a_{HT}: signal gain coefficient [counts sr m³ ms⁻¹]
 - Proportional to tile emissivity, transmittance of optical system, etc.
- B_{HT}: other sources+electronic noise [counts ms⁻¹]

Experiment to determine the VIR germanium window transmittance

VIR

EPFL Swiss Plasma Center

VIR germanium window transmittance decayed

- According to the vendor, window transmittance was originally 95(1)% when installed (Feb. 2021)
- However, window transmittance decayed to 32% in Feb. 2023!
- $N_{counts} = a_{HT} \Delta t_{int} I_{bb}(T) + B_{HT}$

Main hypothesis for VIR germanium window transmittance decay: microwaves

- Another identical germanium window cracked in TCV in 2022
 - It's microwave absorption was measured as high
- Therefore microwaves probably also altered the structure of the VIR window

- Signal decayed from March-2021 (germanium window installed) to Jan-2023
- We have three calibrations from this period

- Signal decayed from March-2021 (germanium window installed) to Jan-2023
- We have three calibrations from this period
- Trying to fit the three known values of a_{HT} together...

- Signal decayed from March-2021 (germanium window installed) to Jan-2023
- We have three calibrations from this period
- Trying to fit the three known values of a_{HT} together... still gives biased results

- Signal decayed from March-2021 (germanium window installed) to Jan-2023
- We have three calibrations from this period
- It is possible to linear-interpolate a_{HT} from the last two calibrations

- Signal decayed from March-2021 (germanium window installed) to Jan-2023
- We have three calibrations from this period
- It is possible to linear-interpolate a_{HT} from the last two calibrations
- And then use the avg. power from 2022-2 to normalize the power of the others

- It is possible to linear-interpolate a_{HT} from the last two calibrations
- And then use the average power value to normalize the power of the others
- It is then possible to fit an exponential curve for the 1st period of shots

Conclusions

- The VIR signal decreased from March 2021 to January 2023
 - VIR germanium window transmittance dropped by a factor of 3
- Time-dependent calibrations were developed to correct the 2021-2023 data

Conclusions and epilogue

- The VIR signal decreased from March 2021 to January 2023
 - VIR germanium window transmittance dropped by a factor of 3
- Time-dependent calibrations were developed to correct the 2021-2023 data
- Also: A new sapphire window has been installed for the 2023 campaign.
 - a_{HT} as high as in the beginning of 2021 was recovered

M. Zurita | SPS conference | 8 Sep. 2023

EPFL

Swiss
Plasma
Center

Extra slides

EPFL Swiss Plasma Center

The TCV tokamak

CAD drawing of the TCV tokamak by Matthieu Toussaint.

[D.S. Oliveira, NF 2022]

Baffle campaigns

Short and Long Inner and Outer baffles create configurations with variable divertor closure

Tested various combinations in dedicated experimental campaigns

M. Zurita | SPS conference | 8 Sep. 2023

Final results: correcting the power

- The VIR gain of the TCV shots from 2021 to 2022 was corrected with the new time-dependent calibration
- The power of the ref. shots is now compatible with a constant

PEX ref. shots: power reaching the floor

- Power of PEX ref. shots became constant after applying new time-dep. calibration
- The 2020 mystery: why is the heat flux so much lower than in 2021–2022?
- Shots used: [66092 66415 66857 67162 68795 69230 70042, 70156 70367 70571 70750, 71178 71731 71764 71979, 71764 72216 72296 72333 72615 73201 73636 74543, 75795 75800 76745 77040]

PEX ref. shots: power reaching inner wall

- The shots had the same configurations
- Including baffled shots (SI-LO & SI-SO) and unbaffled from 2020
- Inner target power is still compatible with a constant!
 - Analysed shots: [66092 66857 67162 68795 69230 70156 70367 70750 71178 71764 72333 72615 73201 73636 74543 75800 76745 77040]

M. Zurita | SPS conference | 8 Sep. 2023

PEX reference shots

- PEX (power exhaust) ref. shots were analysed
- The shots had the same configurations
 - Analysed shots: [72216 72296 72333 72615 73201 73636 74543, 75795 75800 76745 77040]

Infrared thermography temperature, heat, and power profiles for PEX ref. shots

Old germanium window

- According to the vendor, the germanium window initially had more than 90% transmittance
- Info about the window: https://spcwiki.epfl.ch/wiki/im ages/2/2c/20201222-Edmund -Optics-WINDOW_GE_75M M_3-5_UM_AR_CTD_TS.pdf

VIR experiment to measure window transmittance decay

Camara images

Experimental setup

Trying to "fit" an exponential to the 3 calibrations aHT

 Jump in signal in between unbaffled campaigns increased with this time-dependent calibration

What we really fitted

- Two SI-LO baffled shots were also considered
- One SI-LO shot very close to the 2021-03-30 calibration was considered as reference for power (not shown in the figure, as it was not fitted).

What about an exponential with 0 offset?

Power still decreases in the unbaffled phase

IR cameras: calibration to temperature

 Conversion from raw data (digitized photon counts) to temperature is done via calibration

$$N_{raw} = a_{HT} \Delta t_{int} I_{bb}(T) + b_{HT} \Delta t_{int} + c_{HT} \Rightarrow$$

$$T = I^{-1}[(N_{raw} - b_{HT} \Delta t_{int} - c_{HT})/(a_{HT} \Delta t_{int})]$$

- N_{raw}: raw counts [counts]
- Δt_{int}: camera integration time (adjustable) [ms]
- I_{bb}: black body integral [sr⁻¹m⁻³]
- T: Temperature [K or °C]
- a_{HT}: signal gain factor [counts sr m³ ms⁻¹]
- b_{HT}: dark currents/other sources [counts ms⁻¹]
- c_{HT}: electronic noise component [counts]

Federico Nespoli's PhD thesis (2017), Fig. 2.12.

Thermocouples (TCs)

- Thermocouples are used to measure temperature.
- Heating up a joint of two dissimilar metal wires produces a voltage proportional to the temperature difference between the hot and cold junctions.

Source: omega.com

Thermocouples (TCs) & heated tiles in TCV

- Thermocouples are used to measure temperature.
- Together with heating elements embedded in tiles, TCs can calibrate the IR cameras.

Thermocouples (TCs) & heated tiles in TCV

- Thermocouples are used to measure temperature.
- Together with heating elements embedded in tiles, TCs can calibrate the IR cameras.

Roberto Maurizio's PhD thesis (2020), Fig. 2.10.

Thermocouple-corrected calibration

EPFL Calibration

H. Reimerdes

- ABC calibration: Background term varies during the day
- > Use thermocouple measurement (TC) to correct B for each discharge
 - Use measurement of diagnosed tile (index TC) at time t_0 to determine momentary value $B_{\rm TC}(t_0)$

$$N_{\text{TC}}(t_0) = A_{\text{TC}} I(T_{\text{TC}}(t_0)) \Delta t_{\text{int}} + B_{\text{TC}}(t_0) \Delta t_{\text{int}} + C_{\text{TC}}$$

$$\Leftrightarrow B_{TC}(t_0) \Delta t_{int} = N_{TC}(t_0) - A_{TC} I(T_{TC}(t_0)) \Delta t_{int} - C_{TC}$$

Derive correction coefficient for pixel dependent B_{xy}

$$N_{xy}(t) = A_{xy} I\left(T_{xy}(t)\right) \Delta t_{\text{int}} + \underbrace{\frac{B_{\text{TC}}(t_0) \Delta t_{\text{int}}}{B_{\text{TC}} \Delta t_{\text{int}}}}_{B_{xy}} \Delta t_{\text{int}} + C_{xy}$$

- Can be extended to C_{xy} , if needed

M. Zurita | SPS conference | 8 Sep. 2023

Comparison between calibrations

Tangential infrared (TIR) camera [1]

Measures temperature on the tokamak outer wall

TIR vs VIR

 Temperature discrepancies between VIR and TIR motivated the investigation on the calibration

