Forward Electron Trigger Studies using the General Purpose Calorimetry Framework Lorenzetti Showers SPS Annual Meeting 2023

Meinrad Schefer

September 6th, 2023





Meinrad Schefer

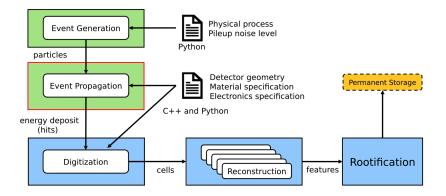
Forward Electrons with Lorenzetti Showers

### Motivation for using Lorenzetti Showers

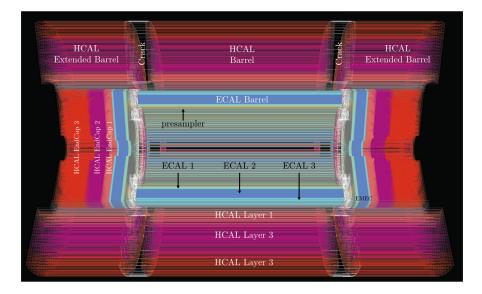
- Simulations are essential for preparing experiments, designing sub-detectors, interpreting results and for guiding upgrades in high energy physics.
- The high luminosity LHC upgrade will produce extreme signal pileup levels for which a fast and accurate simulation will become very important.
- The use of event simulation and reconstruction software is often restricted to one collaboration.
- Lorenzetti Showers provides a flexible general purpose framework for calorimetry which can be adapted for different detector specifications.
- My goal is to verify the behaviour of forward electrons simulated by Lorenzetti with studies performed for the ATLAS detector.
- https://github.com/lorenzetti-hep/lorenzetti

### Event Generation and Processing

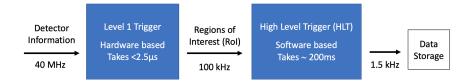
- Event generation based on Pythia 8
- Event propagation based on Geant4



### Simulating the ATLAS Calorimeter

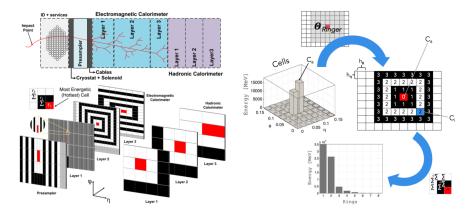


- The LHC's beam luminosity of 10<sup>34</sup> cm<sup>-2</sup>s<sup>-1</sup> results in 40 million bunch crossings with each about 20 collisions per second.
- To store all this information would fill up data storages and overwhelm them with events irrelevant for analyses.
- Therefore a trigger system is used to select events of interest.



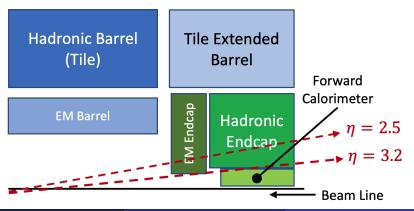
### The NeuralRinger Algorithm for Electron Identification

- Using calorimetric data in Rols to build rings and calculate their energy sums in the HLT in the barrel region ( $\eta < 2.5$ )
- Training of neural networks (NN) on the ring sums provides selections to distinguish real from fake electrons



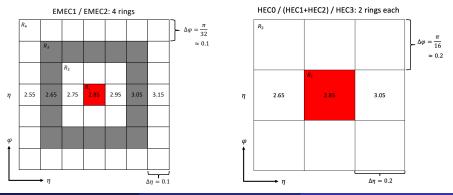
### Forward Calorimeters in ATLAS

- Extending the NeuralRinger to more forward regions improves analyses that are not only focused on the barrel.
- However, these regions are more challenging due to reduced tracking information, lesser granularity and more inactive material.
- The ATLAS pixel detector Run 4 upgrade will extend to  $\eta = 4$ .



### Forward Ring Shapes

- According to detector granularities only 4 rings are built in the EMEC layers and only 2 rings in the HEC layers.
- The Lorenzetti simulation has 3 EMEC layer, whereas ATLAS only has 2, both have 3 HEC layers.
- Rings reaching into regions of different granularity are cut at  $\eta < 2.5$  and  $\eta > 3.2$ .

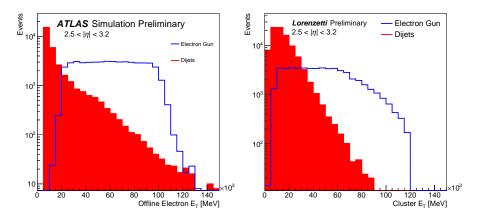


Meinrad Schefer

Forward Electrons with Lorenzetti Showers

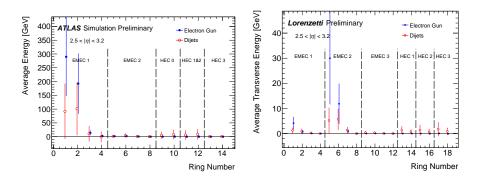
### $E_T$ Distributions

- ATLAS:
- Electron gun: 20 GeV  $< E_T <$  100 GeV, Dijets:  $E_T >$  50 GeV
- Lorenzetti:
- Electron gun: 100 GeV < E < 1000 GeV, Dijets:  $E_T >$  20 GeV



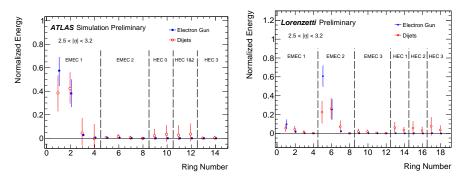
### **Ring Energies**

- ATLAS (total Energy) vs Lorenzetti  $(E_T)$
- Standard deviation error bars; large energy range (see Slide 9) -> large deviation in the highest energetic cell
- ATLAS rings 1-14 very comparable to Lorenzetti rings 5-18



### Normalized Rings

- Input variables for neural networks
- Again similar behaviour between ATLAS rings 1-14 and Lorenzetti rings 5-18
- Previous ATLAS studies were able to reduce fake acceptance by an order of magnitude
- Similar results expected for the Tunings on Lorenzetti data



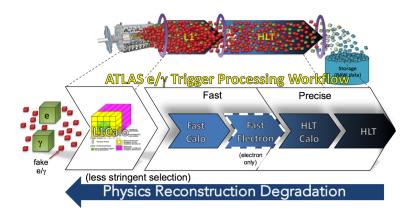
- As a general-purpose calorimetry framework Lorenzetti Showers provides a very useful tool for detector studies.
- It features an event generation and reconstruction chain which allows to provide samples based on calorimetry information.
- The same forward ring structures as the ones for ATLAS have been implemented in Lorenzetti.
- The ring energy distributions look quite similar for both.
- Therefore, similar results can be expected for the NN tunings.
- NN training steps will follow soon to verify the previous assumption.

# Thank you!

## Backup

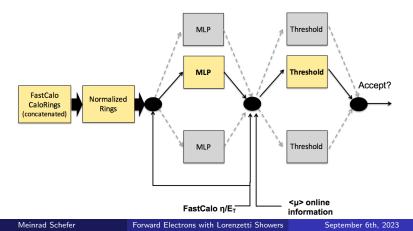
### ${\rm e}/\gamma$ Trigger Processing Workflow

• The NeuralRinger algorithm has been introduced in 2017 in the Fast Calo step to reduce CPU demands.



### Processing Flow

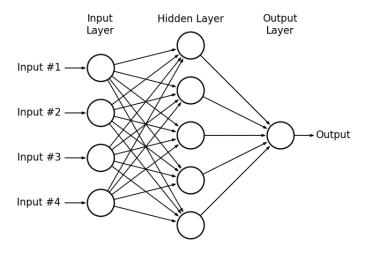
- An ensemble of Multi Layer Perceptrons (MLPs) is trained with the informations from the rings to discriminate signal from background.
- The MLPs provide the discriminants for the trigger software.
- Using this technique it was possible to significantly reduce the CPU time and the rate of fake candidates that are passed on.



16/24

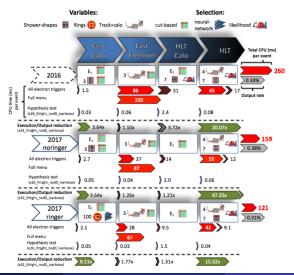
### Multi Layer Perceptrons (MLPs)

- MLPs are a class of feedforward artificial neural networks.
- Each node except the input has a nonlinear activation function which allows MLPs to distinguish data which are not linearly separable.

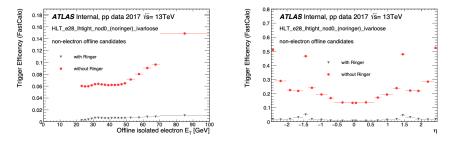


### NeuralRinger CPU Reduction

 Using the NeuralRinger it was possible to reduce the electron trigger CPU time by 38 ms per event.

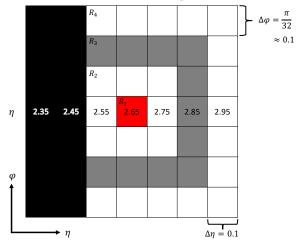


• Using the NeuralRinger it was possible to reduce the fake electron rates in the FastCalo step by an order of magnitude.



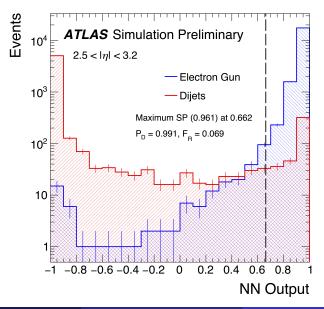
### Example of Rings that are Cut

• If the hottest cell is for example at  $\eta = 2.65$ , the cells with  $\eta < 2.5$  are cut from the 3rd and 4th ring.



EMEC1 / EMEC2: 4 rings

### NN Output Distribution (ATLAS)



• 
$$SP = \sqrt{\sqrt{P_D(1-F_a)} \cdot \frac{1}{2}(P_D+1-F_a)}$$
.

• (passed = identified as signal)