DEEP LEARNING METHODS FOR NEUTRINO EVENT RECONSTRUCTION

Dr. Saúl Alonso-Monsalve ETH Zurich

Joint Annual Meeting of the Swiss Physical Society Austrian Physical Society 7 September 2023

The physics case

Goal: develop an analysis strategy that does not depend on the neutrino interaction model for 3D granularity detectors.

Case study: a detector concept analogous to the SuperFGD detector from the T2K experiment.

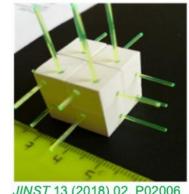
Part of the upgrade of the near detector (ND280) of the T2K experiment in Japan.

Full-active fine-grained scintillator (FGD)

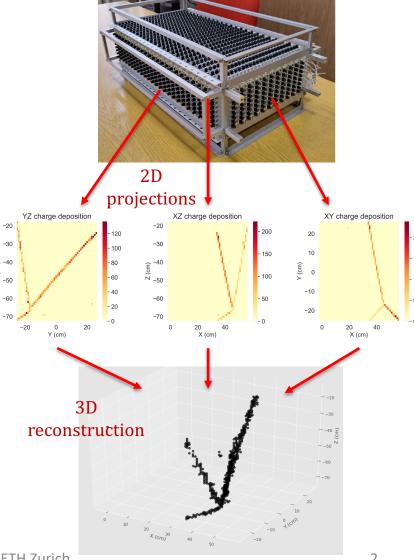
with three views.

2M optically independent cubes, 1 cm³ per cube.

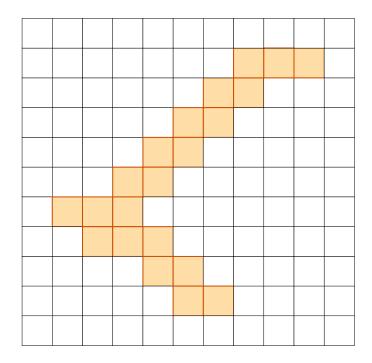
Spatial localization of scintillation light.



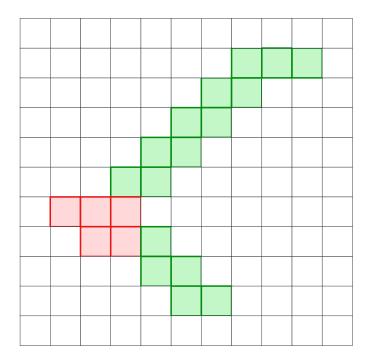
JINST 13 (2018) 02, P02006 NIM A936 (2019) 136-138



- a) Hit identification.
- b) Particle trajectory fitting.
- c) Vertex activity fitting.

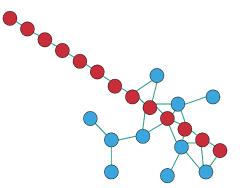


- a) Hit identification.
- b) Particle trajectory fitting.
- c) Vertex activity fitting.

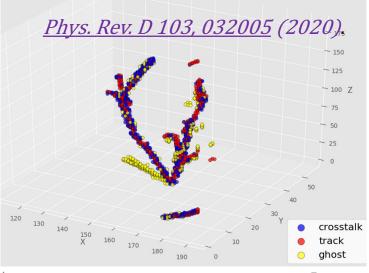


Hit identification: noise and ambiguity rejection

- Non-physical voxels appear due to a lack of information during the 2D to 3D reconstruction, called ghost voxels.
- Cubes with a real deposition but where no track has passed through it, called crosstalk voxels.
- Approach: use Graph Neural Networks (GNNs) to identify those voxels:
 - Example of variables representing each hit: number of photoelectrons deposited in each plane, multiplicity in each plane, etc.
 - The algorithm chosen was GraphSAGE (arXiv:1706.02216).
 - In GraphSAGE, each node neighbourhood defines a computation graph (in our example, each voxel is connected to other voxels within a 1.75 cm radius).



	GENIE Training				
GENIE Testing			xTalk	Ghost	
	Efficiency Purity	94%	94%		
	Purity	96%	91%	92%	
Pgun* Testing		Track	xTalk	Ghost	
	Efficiency	95%	94%	85%	
	Purity	98%	89%	92%	

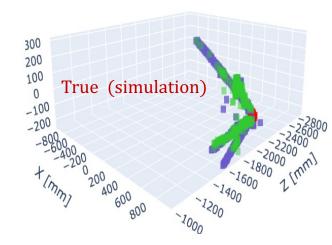


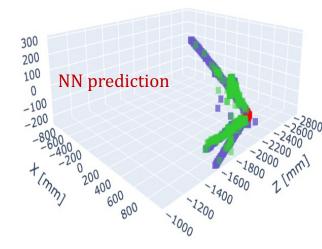
Hit identification: single vs multi-particle hits

- Classify each individual hit as:
 - Single-particle hit: only one particle passes through the hit cube.
 - Multiple-particle hit: at least two different particles pass through the hit cube.
 - Other: crosstalk or ghost.
- Using a submanifold sparse U-Net-based neural network architecture (https://arxiv.org/abs/1706.01307).
 - More computationally efficient than standard CNNs.
- Efficiencies:

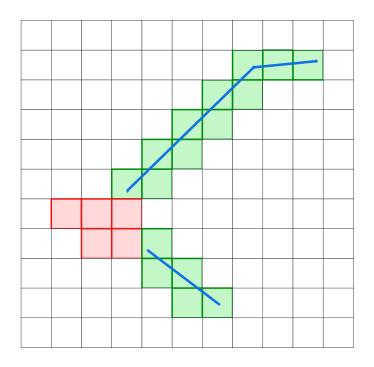
	True multi-particle	True single-particle	True other
Pred. multi-particle	0.7777	0.1511	0.0711
Pred. single-particle	0.0055	0.9654	0.0291
Pred. other	0.0079	0.0479	0.9442

• Excellent single-particle isolation accuracy allows running a further NN-based track trajectory fitting on single particles, relying on detailed MC simulations of single particles.



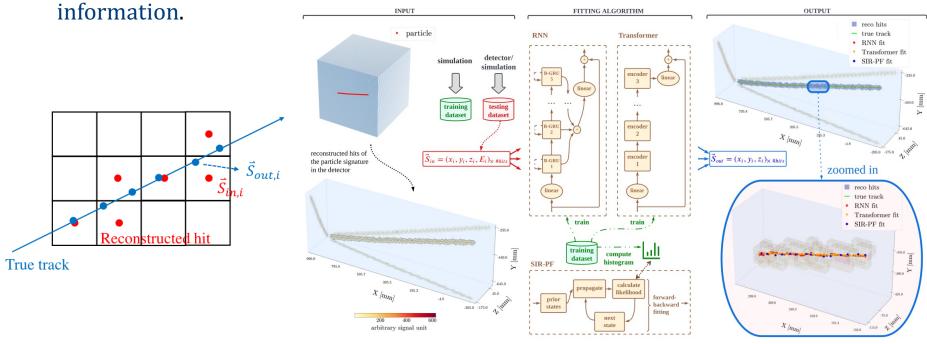


- a) Hit identification.
- b) Particle trajectory fitting.
- c) Vertex activity fitting.



Fitting of the particle trajectory

The next step is to predict the trajectory of particles based on single-particle hit



- Implemented a recurrent neural network (RNN), a Transformer (encoder), and a sequential-importance-resampling particle filter (SIR-PF).
 - We treat each particle as a sequence of hits, benefiting from the success of RNN and Transformer in Natural Language Processing (NLP).

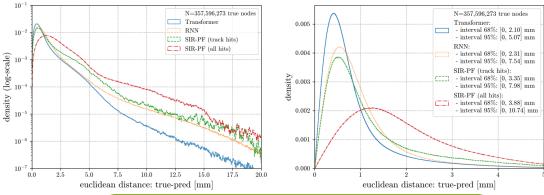
Details

60

 Each algorithm outputs the fitted 3D trajectory point for each input hit.

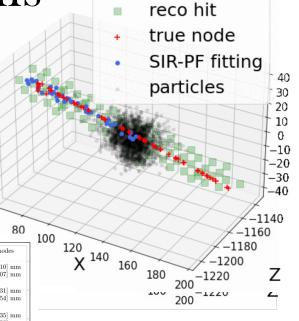
- SIR-PF: first reconstructed hit used as prior (average of forward and backward filterings), sample propagation through the following 15 hits. The likelihood relies on a precomputed 5-dimensional histogram.
- RNN: five bi-directional GRU layers, 50 hidden units each.
- Transformer: 5 encoder layers, 8 heads, hidden size of 64.

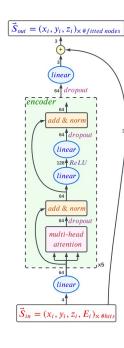
Main results (<u>Commun. Phys 6, 119 (2023)</u>):

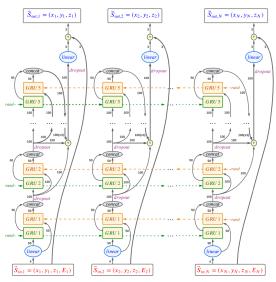


>30% better transformer resolution compared to the SIR-PF

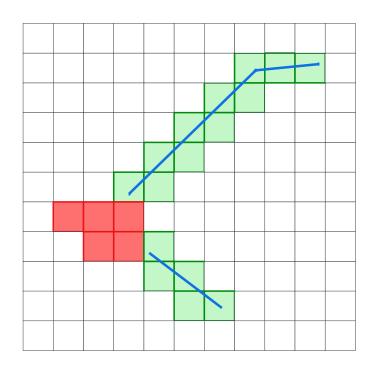
 The improved trajectory fitting significantly improves the charge reconstruction, PID by range, and momentum by curvature.







- a) Hit identification.
- b) Particle trajectory fitting.
- c) Vertex activity fitting.

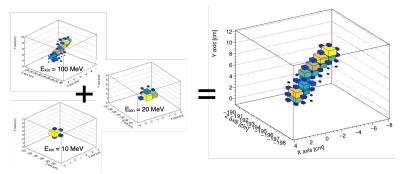


Vertex activity: standard fitting method

- Vertex activity (VA): particles releasing their energy in the proximity of the neutrino interaction vertex but that do not show visible tracks from where the kinematics can be reconstructed.
 - A "blob" of scintillation light is observed.

Standard VA fitting method:

- Goal: build the neutrino VA in forward folding from the sum of single particle reconstructed objects.
 - Particle information to reconstruct: # of particles (mostly protons), energy, direction, vertex position.
- Method: likelihood fitting.
 - 1. Simulating any possible combination of the VA parameters and build VA.
 - 2. Finding the VA 3D image (e.g. SFGD hits) that "best fits" the data and find the "best-fit" parameters.



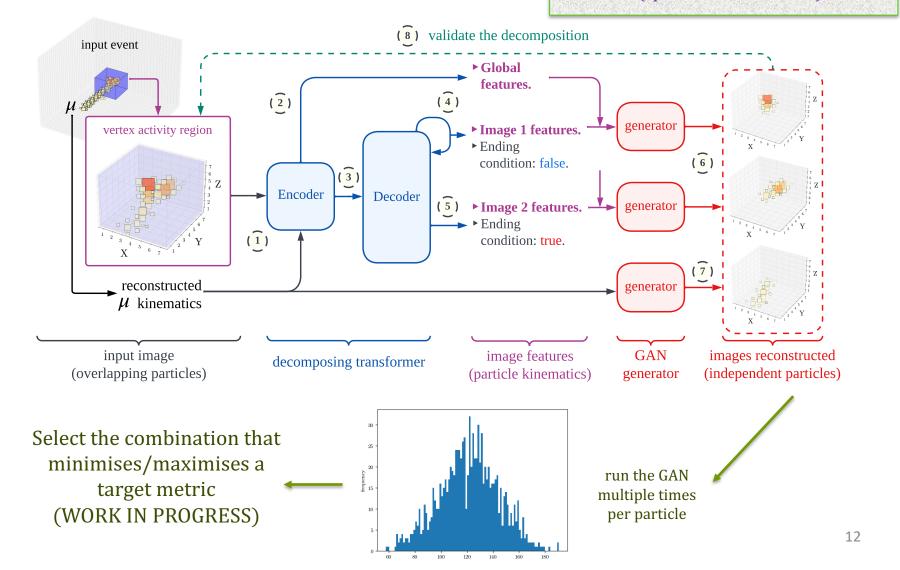
- The fitting method is highly computationally expensive.
 - Requires a large number of combinations of parameters to be simulated.
 - Unfeasible in practice.

• Advantages:

- Studying systematics directly from single-particle data (e.g., beam test)
- Allowing to set confidence intervals on the fitted VA parameters.

Alternative: deep-learning approach

- Transformer output:
 - Vertex x, y, z position.
 - Kinetic energy of each particle.
 - Direction of each particle (spherical coordinates)



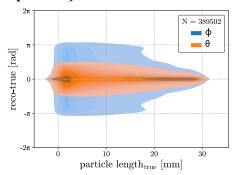
VA fitting transformer results

Number of protons:

- Testing on events with 1-5 protons.
- The algorithm predicts the correct number of particles in each event with ~65% acc.
- It predicts the correct number of particles with 98% acc. assuming an error of \pm 1 particle.
- Missed protons have on average a KE ≤ 10 MeV.

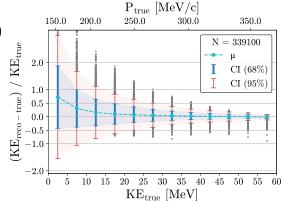
Direction (in spherical coordinates):

- Isotropic testing events.
- Symmetric results for both θ and Φ .
- Better results for longer particles (as expected).



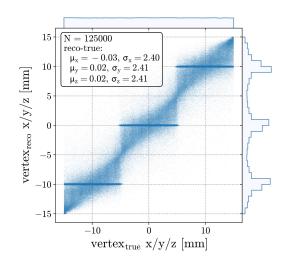
Kinetic energy:

- Testing events with protons of a KE up to 60 MeV (uniform distribution).
- Better resolution for high-energy events.
- Standard deviation ~7
 MeV on average (resolution ~11%).



Vertex position:

- Testing protons starting randomly within a 3x3x3 cube area.
- Always guessing the right cube (>98% of the cases).
- 3D average distance between true and reco vertex of ~4 mm (~2.4 mm per coordinate).



Summary

- Deep learning could be a key tool for event reconstruction in voxelised detectors.
 - In particular, in detectors that provide fine details of the interaction but are hard to analyse using traditional methods.
- Successful application to different problems, such as:
 - Hit identification.
 - Track fitting.
 - Vertex activity understanding.
- The developed strategy allows us to attack the problem of systematic uncertainties and use the details of MC detector simulations more confidently.
- Future work requires an extensive validation of the methods and application to experimental data.

DEEP LEARNING METHODS FOR NEUTRINO EVENT RECONSTRUCTION

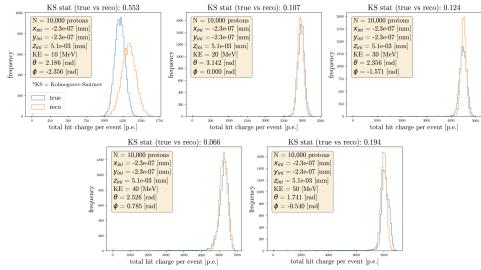
Dr. Saúl Alonso-Monsalve ETH Zurich

Joint Annual Meeting of the Swiss Physical Society Austrian Physical Society 7 September 2023

Validating the GAN generator

- Five distinct batches of samples, each with fixed initial physics parameters.
 - 10K protons each.
- We generated five batches of protons with the NN using the same physics parameters.
 - 10K protons each too.
- Allows us to understand whether the network is catching the stochasticity of the simulation.

	Number of protons	Initial KE [MeV]	Initial position [cm]	heta [rad]	arphi [rad]
Testing sample 1	10K	10	$\begin{pmatrix} -2.3e^{-7}, \\ -2.3e^{-7}, \\ -5.1e^{-3} \end{pmatrix}$	2.186	-2.356
Testing sample 2	10K	20	$\begin{pmatrix} -2.3e^{-7}, \\ -2.3e^{-7}, \\ -5.1e^{-3} \end{pmatrix}$	3.142	0.000
Testing sample 3	10K	30	$\begin{pmatrix} -2.3e^{-7}, \\ -2.3e^{-7}, \\ -5.1e^{-3} \end{pmatrix}$	2.356	-1.571
Testing sample 4	10K	40	$\begin{pmatrix} -2.3e^{-7}, \\ -2.3e^{-7}, \\ -5.1e^{-3} \end{pmatrix}$	2.526	0.785
Testing sample 5	10K	50	$\begin{pmatrix} -2.3e^{-7}, \\ -2.3e^{-7}, \\ -5.1e^{-3} \end{pmatrix}$	1.741	-0.540



XY charge projection

