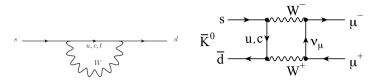
Search for the $K^0_S \rightarrow \pi^+ \pi^- \mu^+ \mu^-$ decay using the LHCb Run II data

Luis Miguel Garcia Martin

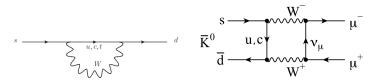
Joint Annual Meeting of the Swiss Physical Society Austrian Physical Society 4 - 8 September 2023, Universität Basel


L.M. Garcia

Search for the $K^0_{
m S} o \pi^+ \pi^- \mu^+ \mu^-$ decay using the LHCb Run II data

Introduction: Why Kaons?

• The $s \rightarrow d$ process is forbidden at tree level in the SM (suppressed)

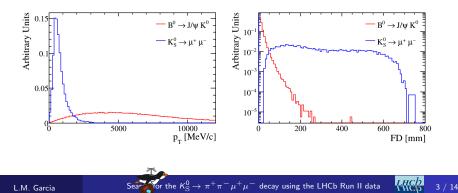


• Some exotic BSM scenarios can enhance it by 2 orders of magnitude [arXiV:2201.07805]

Introduction: Why Kaons?

• The $s \rightarrow d$ process is forbidden at tree level in the SM (suppressed)

- Some exotic BSM scenarios can enhance it by 2 orders of magnitude [arXiV:2201.07805]
- LHCb already provided some world best measurements/limits:
 - $\mathcal{B}(K^0_{\rm S}
 ightarrow \mu^+ \mu^-) < 2.1 imes 10^{-10}$ @ 90% CL [PRL125(2020)231801]
 - $\mathcal{B}(K^0_{S(L)} \rightarrow \mu^+ \mu^- \mu^+ \mu^-) < 5.1 \times 10^{-12} (2.3 \times 10^{-9}) @ 90\% CL$ [PRD108(2023)L031102]


• First LHCb result with $K_{\rm L}^0$

•
$$\mathcal{B}(\varSigma^+ \to p\mu^+\mu^-) = 2.2^{+1.8}_{-1.3} \times 10^{-8} \ (4.1\sigma) \ [\text{PRL120(2018)221803]}$$

Challenges: Transverse momentum

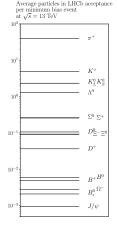
Transverse momentum standard handle for signal-bkg separation at LHCb

- Not usable for s decays due to their low energy
- Compensated requiring large flight distance
- B-physics: $ho_{
 m T}\sim$ 1-2 GeV/c, FD \sim 1-2 cm
- s-physics: $p_{
 m T}\sim 0.08\,{
 m GeV}/c$, FD $\sim {\cal O}(70)\,{
 m cm}$

Challenges: Trigger

Designed mostly for b and c decays (very low efficiency otherwise)

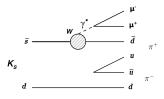
L0 (Hardware)


> HLT1 (Software)

> HLT2 (Software)

- Muon (hadron) L0 trigger
 p_T > 1 GeV/c (hardware)
- Hlt1 and Hlt2 are software and customizable
- L0 removed for Upgrade (2022)
- Huge strangeness production

Search fo


- Also from *b* and *c* decays
- About 1 strange hadron per event ($\sim 10^{-3}~B_s^0)$

Motivation

- Very suppressed FCNC in the SM
 - $\mathcal{B}(K^0_{
 m S} o \pi^+\pi^-\mu^-\mu^+) = 4.69 imes 10^{-14} \ [arXiv:1712.10270]$
 - Possible enhancements from BSM
 - Little PHSP: $m(K_{\rm S}^0) 2m(\pi) 2m(\mu) = 7.1 \, {\rm MeV}/c^2$
 - Extra suppression
 - Colinear decay products
- No measurements yet
- $\bullet\,$ Could give some insights on $K^0_{\rm S}\!\to\pi^+\pi^-\gamma^*$
- In collaboration with analysts from $K^0_S \! \to \mu^+ \mu^- \mu^+ \mu^-$ [PRD108L031102]
 - Same topology (can benefit from expertise and framework)

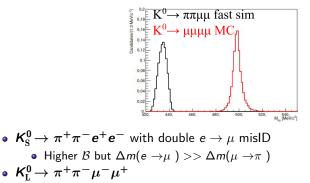
- Data sample: Run-II (2016-2018)
- Trigger:
 - Looking for high- $p_{\rm T}$ muons from signal
 - Increasing statistics by also looking for high- $p_{\rm T}$ particles in the underlying event
 - Refining the search imposing both muons to share a common vertex

Offline selection:

- Preselection (Rectangular cuts)
- BDT (Machine learning algorithm)

Disclaimer: Analysis is early state. Preliminary results or from $K_{\rm S}^0 \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ [PRD108L031102]

Search for the $K^0_{S} \rightarrow \pi^{-1}$



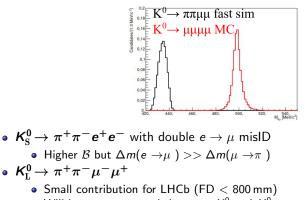
Selection strategy: Backgrounds

• Potential physical backgrounds:

•
$$K^0_{
m S}
ightarrow \mu^+ \mu^- \mu^+ \mu^-$$
 with double $\mu
ightarrow \pi$ misID

 $\bullet\,$ Negligible: Peak is 16 sigma away from signal and low ${\cal B}$

- Small contribution for LHCb (FD < 800 mm)
- Will interpret our result in terms $K_{\rm S}^0$ and $K_{\rm L}^0$



Selection strategy: Backgrounds

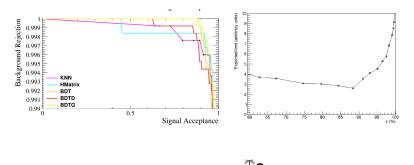
• Potential physical backgrounds:

•
$$K^0_{
m S}
ightarrow \mu^+ \mu^- \mu^+ \mu^-$$
 with double $\mu
ightarrow \pi$ misID

 $\bullet\,$ Negligible: Peak is 16 sigma away from signal and low ${\cal B}$

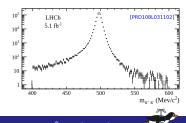
• Will interpret our result in terms $K^0_{
m S}$ and $K^0_{
m L}$

Main background expected to be combinatorial



Selection strategy: BDT

- Using MVA (Multivariate analysis) to discriminate sgl and comb. bkg.
- Testing several methods
 - Done in $K^0_{\rm S}
 ightarrow \mu^+ \mu^- \mu^+ \mu^-$ analysis
 - Gradient Boosted Decision Trees (BDTG) found to be the optimal one
- $\bullet~\text{BDT}$ cut optimize by minimizing the expected CL_{s} limit


Search for the $K^0_S \rightarrow \pi^+ \pi^- \mu^+ \mu^-$

• Also tested with Punzi with similar results

Normalization channel

- The branching ratio can be derived counting signal decays:
 $$\begin{split} & \mathcal{N}(\mathcal{K}^0_{\mathrm{S}} \to \pi^+ \pi^- \mu^- \mu^+) = \\ & 2 \times \mathcal{L} \times \sigma_{s\overline{s}} \times f_{\mathcal{K}^0_{\mathrm{S}}} \times \mathcal{B} \ (\mathcal{K}^0_{\mathrm{S}} \to \pi^+ \pi^- \mu^- \mu^+) \times \epsilon(\mathcal{K}^0_{\mathrm{S}} \to \pi^+ \pi^- \mu^- \mu^+) \end{split}$$
 - High uncertainty on some terms
- Using a known (normalization) channel: $K_{\rm S}^0 \to \pi^+\pi^ \frac{N(K_{\rm S}^0 \to \pi^+\pi^-\mu^-\mu^+)}{N(K_{\rm S}^0 \to \pi^+\pi^-)} = \frac{\mathcal{B}(K_{\rm S}^0 \to \pi^+\pi^-\mu^-\mu^+)}{\mathcal{B}(K_{\rm S}^0 \to \pi^+\pi^-)} \frac{\epsilon(K_{\rm S}^0 \to \pi^+\pi^-\mu^-\mu^+)}{\epsilon(K_{\rm S}^0 \to \pi^+\pi^-)}$
 - Very abundant at LHCb (${\cal B}({\cal K}^0_{\rm S}\!\to\pi^+\pi^-)\sim 69\%$ [PDG])

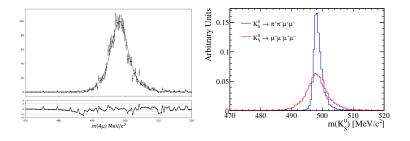
L.M. Garcia

Search for the $K^0_S \rightarrow \pi^+ \pi^- \mu^+ \mu^-$ decaying the LHCb Run II data

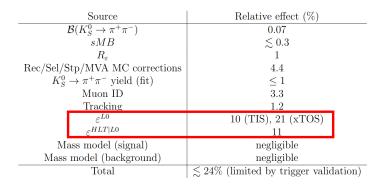
Preliminary study of the expected efficiency

Efficiency (%)	$K_{\rm S}^{0} \rightarrow \pi^+\pi^-\mu^+\mu^-$	$K_{\rm S}^{0} \rightarrow \mu^+ \mu^- \mu^+ \mu^-$
Reconstruction	1	5.2
Stripping	16	35
LO	13	29
HLT1	16	78
HLT2	69	92
Offline selection	TBD	10

Lower efficiency than $K^0_S \rightarrow \mu^+ \mu^- \mu^+ \mu^-$:


- Less PHSP (Smaller opening angle / $p_{\rm T}$)
- Only one $\mu^+\mu^-$ pair

Massfits


Hypatia used to describe the mass peak

- All parameters must be fixed due to low expected yield
- Seen MC-Data discrepancies in peak position and width
 - Corrected using $K^0_{
 m S}
 ightarrow \pi^+\pi^-$
- Expected better mass resolution due to limited PHSP

• ~ 1.2 vs ~ 3.6 MeV/ c^2

Assuming similar systematics to $K^0_S \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ analysis [PRD108L031102]

L.M. Garcia

Search for the $K^0_S \rightarrow \pi^+ \pi^- \mu^+ \mu^-$ decay using the LHCb Run

12 / 14

data

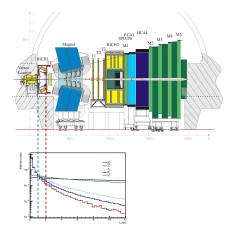
Conclusions

- LHCb big contributor for neutral kaon results:
 - NA48 already analyzed its full dataset
 - NA62 features a charged beam
- Aiming to provide results on \mathcal{B} $(K^0_S \to \pi^+ \pi^- \mu^+ \mu^-)$ by early next year
- Using expertise and framework from $K^0_S \rightarrow \mu^+ \mu^- \mu^+ \mu^-$ analysis

- Expect more precise results from the upcoming LHCb Run 3
 - Plan to specialize in Kaon physics $(K^0_{\rm S} \rightarrow \pi^+\pi^-e^+e^-, K^0_{\rm S} \rightarrow \pi^0\mu^+\mu^-,...)$

SF37 Inned FOR something AWesome

Thanks for your attention



L.M. Garcia

Search for the ${\cal K}^0_{
m S} o \pi^+\pi^-\mu^+\mu^-$ decay using the LHCb Run II data

The measurement can be improved in Run III (2023-2025):

- More luminosity: Expected factor 2-3 w.r.t Run II
- L0 removed: Expected factor 3 improvement in trigger efficiency
- Using decays after Velo (Downstream) and Magnet (T-Tracks)

- Very strong GIM suppression of top contribution
 - $\lambda^5 \sim 0.0005$ (kaons) vs. $\lambda^3 \sim 0.01$ (B mesons)
- Generically large QCD enhancements
- Sensitivity to high-scale (non-MFV) dynamics

