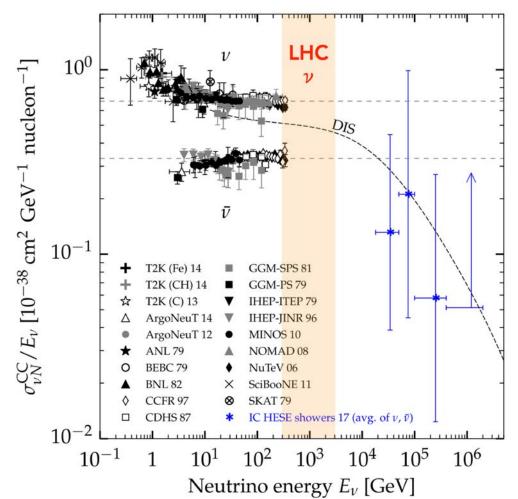


Joint Annual Meeting of the Swiss Physical Society and the Austrian Physical Society Basel, 4–8 September 2023

A.Kauniskangas, on behalf of the SND@LHC collaboration



MOTIVATION

- Colliders offer a novel laboratory for neutrinos:
- At the LHC, a high v flux in the previously unexplored energies of $E_v \in [10^2, 10^3]$ GeV available
- A small-scale LHC experiment can observe neutrinos of all flavours
- ☞Two neutrino detectors in operation at the LHC for Run 3: **SND@LHC** and FASERv

[PRL 122 (2019) 041101]

SCATTERING AND

TI18 tunnel

100 m rock

SND@LHC

• Measures high energy (~TeV) neutrinos from the LHC at an angular acceptance of 7.2 < η < 8.4

Neutrinos

Residual hadrons

• Majority of v from charmed hadron decays \rightarrow probe heavy flavour production at the LHC

480 m

Scattering and Neutrino Detector at the LHC

Charged particles

LHC

magnets

• Designed to distinguish all neutrino flavours

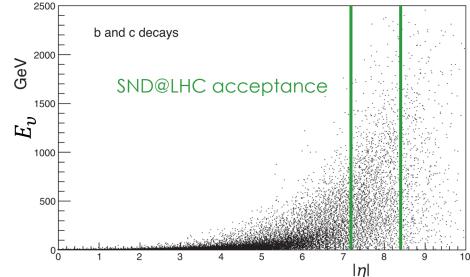
ICE

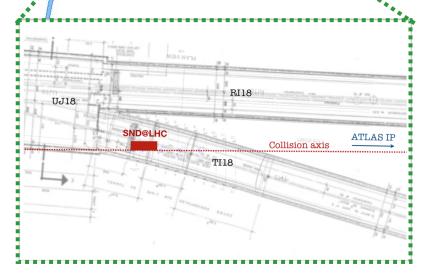
ATLAS

pp collisions

Physics goals

- Charmed hadron
 production
 - Constrain gluon PDFs at very low (~10⁻⁶) momentum fractions
- Lepton flavour universality tests with neutrinos
 - Measure v_e/v_μ and $v_e/v_ au$
- Direct searches of feebly interacting particles


at the LHC


LOCATION

LHC

11-18

TI18: Former transfer line from SPS to LEP

 IP_1

(ATLAS)

- 480 m from ATLAS IP1
- Shielded by 100 m of rock
- LHC magnets deflect charged
 particles away

Off-axis position with pseudorapidity coverage of $7.2 < \eta < 8.4$

- ~90% of v_e, \bar{v}_e coming from charm decays
- Complementary to $\mathsf{FASER}\nu$

EXPERIMENT TIMELINE

August 2020Letter of intent

January 2021

• Technical proposal

March 2021

• Approval by CERN research board

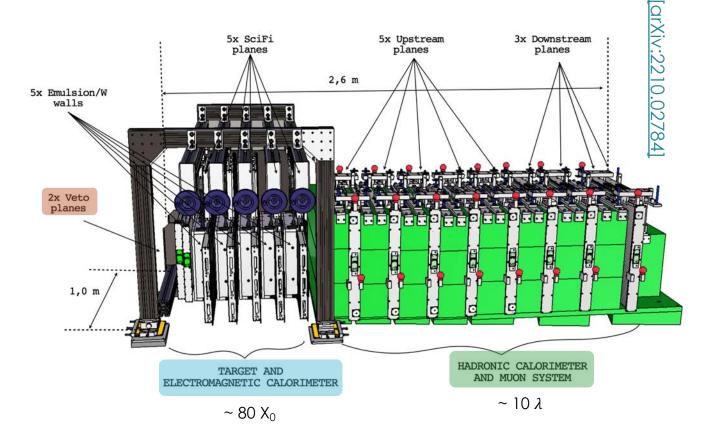
April 2022

• First muons from IP1 measured

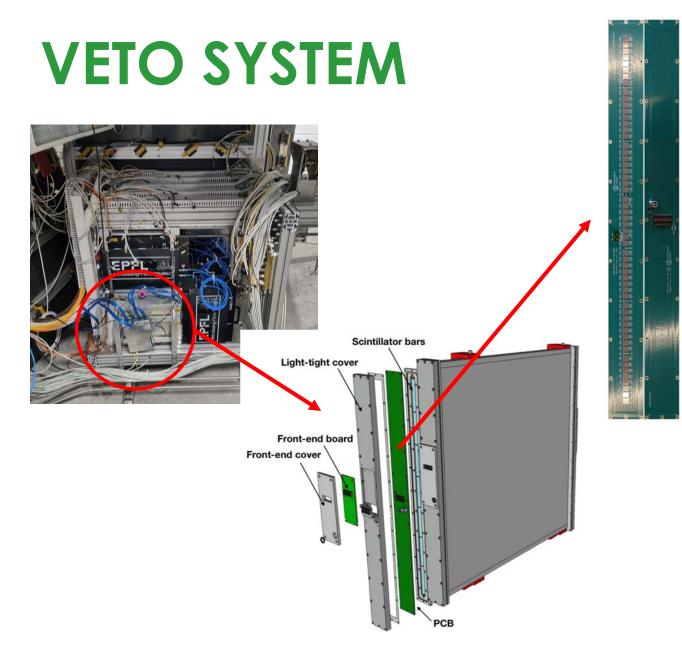
07/06/2023, Basel

DETECTOR DESIGN

Veto

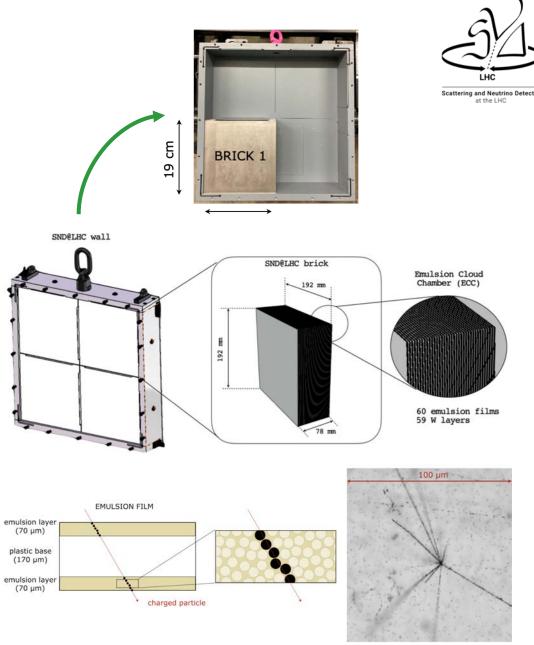

- Two planes of scintillating bars
- Tags charged particles as they enter the detector

Target and vertex detector


- Emulsion Cloud Chambers (ECC) with tungsten for ν identification via precise vertexing
- Scintillating Fiber (SciFi) planes provide timing and calorimetric information

Muon System and HCAL

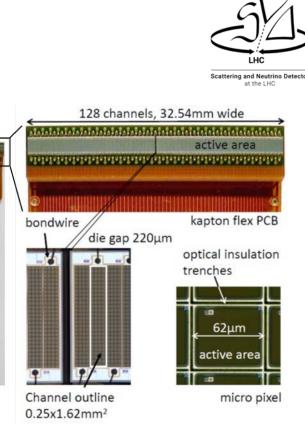
- Scintillating bars interleaved with iron walls, sampling every $\boldsymbol{\lambda}$
- Timing, muon ID, and energy measurement
- Higher granularity in downstream stations for muon tracking

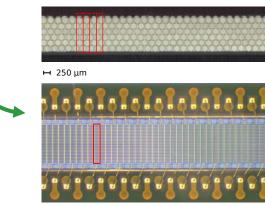


- Two planes for tagging charged particles entering the detector
 - The planes cover the target surface area, and are staggered to mitigate dead zones between bars
- Each plane has 7 scintillating bars
 - Each bar is $1 \times 6 \times 42 \text{ cm}^3$.
 - Bars read out on both ends by 8 SiPMs, each 6 x 6 mm².

EMULSION TARGET

- Five emulsion cloud chamber (ECC) walls used as a vertex detector
 - Each target wall = four ECC bricks
 - Each brick = 60 layers of emulsion (0.3 mm) and 59 layers of tungsten (1 mm)
 - Wall thickness: 78 mm (17 X₀)
 - Sensitive transverse size: 38.4 x 38.4 cm²
- Total target mass: 830 kg
- Target enclosed in acrylic and borated polyethylene box: shields from neutrons and controls temperature (15 °C) and humidity (RH=45 %)




SCINTILLATING FIBRE TRACKER

- Five SciFi stations interleaved with ECC walls, each with two perpendicular planes
 - Each plane is made of staggered layers of 250 μm fibre
 - Planes read out by SiPM arrays of 250 μm channel pitch
- Provides time information, and electromagnetic calorimetry together with the emulsions
 - Interfaced with the ECCs by matching the hit pattern in the electronic detector event with a vertex in the emulsions

A.Kauniskangas, Joint Annual Meeting of SPS and ÖPG

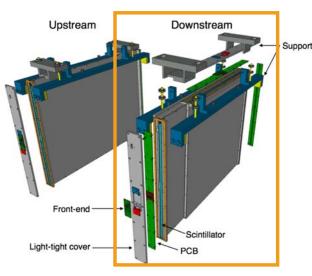
MUON SYSTEM AND HCAL

- 8 stations made of scintillating bars, interleaved with 20 cm iron slabs (1 slab ~ 1 λ_{int})
 - Five **upstream** stations hadronic calorimetry
 - Three downstream stations muon identification

Upstream system

5 stations, each with 10 horizontal scintillating bars

- > Bar dimension: 1 x 6 x 81 cm³
- Read out: both sides, 6 large (6 x 6 mm²), 2 small (3 x 3 mm²) SiPMs
- > Small SiPMs have more pixels
 → extend the dynamic range


MUON SYSTEM AND HCAL

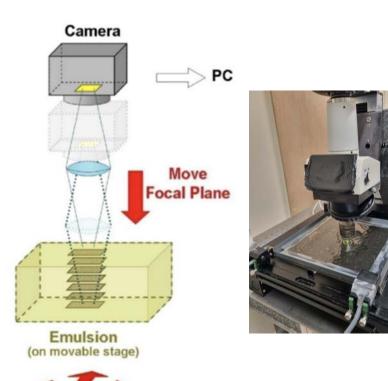
- 8 stations made of scintillating bars, interleaved with 20 cm iron slabs (1 slab ~ 1 λ_{int})
 - Five **upstream** stations hadronic calorimetry
 - Three downstream stations muon identification

Downstream system

3 stations, each with 60 horizontal bars and 60 vertical bars (+ additional vertical plane in the last station)

- ▹ Bar cross-section: 1 x 1 cm²
- Length: 81 cm (horizontal),
 60 cm (vertical)
- Read out: large SiPMs, 1 SiPM each side of horizontal bars, only 1 SiPM on top of vertical bars

DATA ACQUISITION

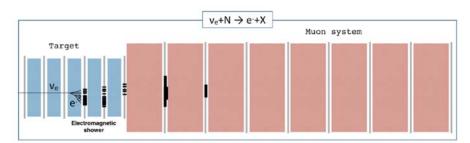


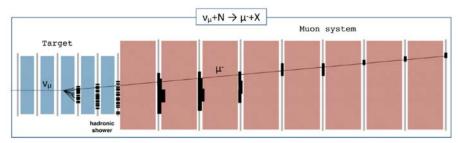
- All electronic detectors are read out by TOFPET2-based front-end boards
 - Low signal threshold
 - Good timing: 40 ps binning
 - 128 channels
- DAQ boards based on Cyclone V FPGA.
 - Runs at 160 MHz, aligned with the LHC clock
 - Collects data from four front-end boards (4x128=512 channels)
 - Gets clock from LHC via optical fibre
 - Triggerless DAQ: all hits above threshold sent to server over ethernet.
- DAQ server
 - Receives hits from DAQ boards, 17k channels in total
 - Runs timestamp-based event-building code
 - Applies online noise filter
 - Saves data to disk in ROOT format

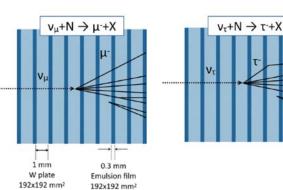
EMULSION SCANNING

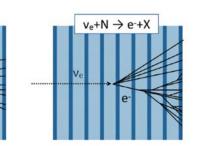
- ECC target data is extracted by developing and scanning the emulsion films (emulsion changed every < 20 fb⁻¹)
- Five scanning stations, each microscope currently scans one emulsion film per day
- Raw microscope images not stored on disk
 - Single emulsion film \approx 3TB of data
 - Processing the images is the bottleneck
- Speed up foreseen:
 - More microscopes coming online
 - Distributed data processing

EVENT RECONSTRUCTION

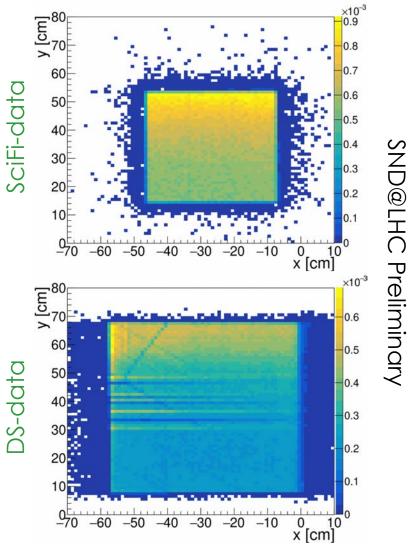

Two-phase event reconstruction:


Online with electronic detectors


- > Select v candidates
- Identify muons (Muon system)
- Measure energy (SciFi+ECC & HCAL)


Offline with nuclear emulsions

- Extract, develop, scan, and analyse emulsion data
- Reconstruct v primary and secondary candidates
- Match emulsion and electronics reconstruction



MUON FLUX MEASUREMENT

- Muon flux measured using electronic detectors
 - Agreement between SciFi/DS: 2%
 - Agreement with Monte Carlo on ~20%-25% level
 - Input given to CERN SY-STI team for the FLUKA simulation, better agreement expected with new simulation
- Muon flux in SciFi vs. emulsions in 1 brick
 - SciFi: 1.4×10⁴ fb/cm²
 - Emulsions: 1.5×10⁴ fb/cm²

	Data	Simulation
SciFi	2.06×10 ⁴ fb/cm ² (syst. uncert. 3%)	1.60×10 ⁴ fb/cm ² (syst.uncert. 12%)
DS	2.35×10 ⁴ fb/cm ² (syst.uncert. 5%)	1.79×10 ⁴ fb/cm ² (syst.uncert. 8%)

CONCLUSION

- SND@LHC is a compact neutrino experiment at the LHC, operating since the start of Run 3
 - Installed and commissioned in less than two years
 - Collected ~70 fb⁻¹ of data with an uptime efficiency of ~97%
- The hybrid detector design combines emulsion cloud chambers with scintillator-based electronic detectors
- Physics analyses are now in progress follow the <u>next talk</u> <u>from M.Ferrillo</u> for first results!

BACKUP

PERFORMANCE SUMMARY

Veto

- Inefficiency around 10⁻⁴ seen in LHC Run 3 data
- Inefficiency dominated by detector dead time of ~200 ns.
 Can be mitigated by requiring good time separation of signal candidates

Emulsions

- Spatial resolution: ~ µm
- Angular resolution: ~ m rad

SciFi

- Spatial resolution
 with muon
 testbeam data
 (SciFi only): ~ 100
 µm
- Time resolutionwith Run 3 data:~ 250 ps

HCAL

 Very high (>99%) efficiency of upstream system in Run 3 data