

Optimization of muon EDM experimental setup using simulations

Ritwika Chakraborty (PSI)

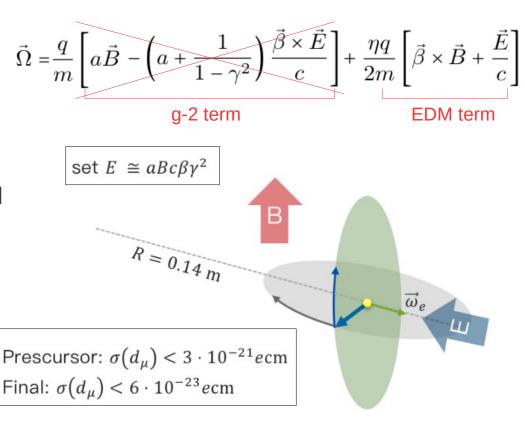
SPS Annual Meeting 2023

5.09.2023

MuEDM Experiment at PSI

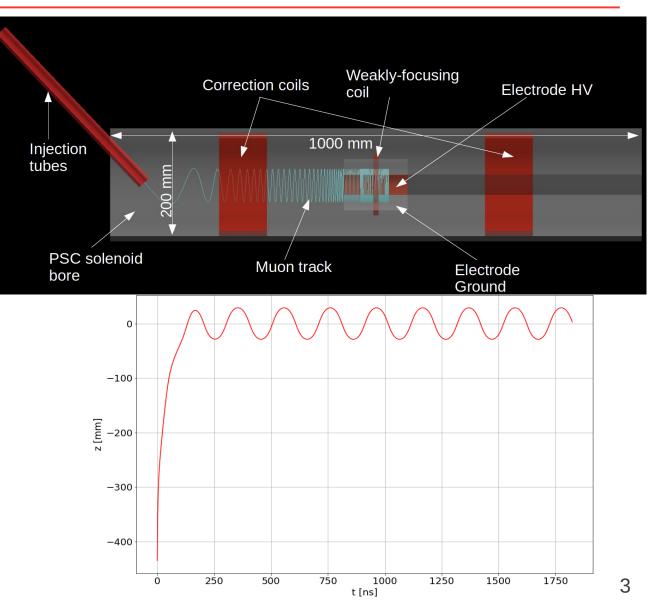
- PSI Muon EDM measurement using Frozen-Spin Technique
- Phase I demonstrates Frozen-Spin technique
- Injecting muons with right experimental design parameters essential for ensuring optimum storage
- Longitudinal asymmetry in positrons decaying from stored muons
 → signal for muon EDM

This talk \rightarrow simulation studies to optimize initial parameters affecting injection efficiency

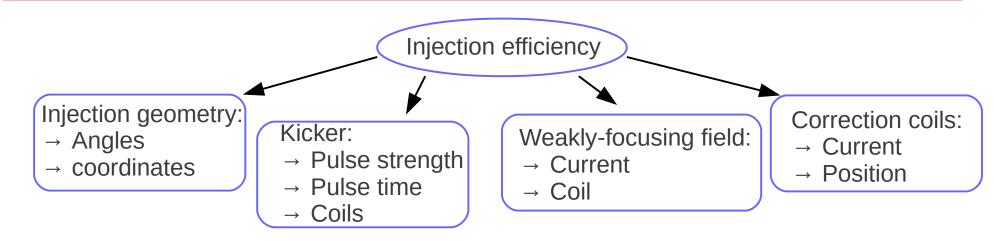


MuEDM Phase I in G4Beamline

- Muons are injected off-axis into 3 T solenoid
- Field gradient at injection corrected by correction coils
- Radial magnetic pulse generated by pair of anti-helmholtz coil
- Muons trapped in weakly-focusing magnetic field at the center generated by thin coils



Multivariate Optimization



- Multivariate optimization → computationally expensive
- G4Beamline simulation run for one configuration of input variables on HPC cluster takes ~6 hrs (for 1M muons)
- High fidelity simulations impossible to do given time constraint

- Replace complex model with approximation \rightarrow Surrogate Model
- Polynomial Chaos Expansion (PCE) :

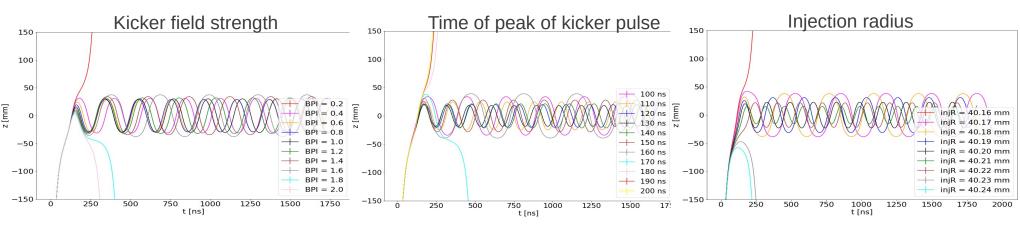
$$Y = \sum_{i=0}^{\infty} \alpha_i \Psi_i \left(\vec{x} \right)$$

- Y → Model response (injection efficiency), $Ψ_i$ → Orthogonal polynomials x → input variables, $α_i$ → expansion coefficients
- Polynomial basis based on input variable distribution
- Coefficients determined using regression based methods

$$\vec{\alpha} = \operatorname{Argmin} \frac{1}{N} \sum_{j=1}^{N} \left\{ f(\vec{\xi}^{j}) - \sum_{i=0}^{P-1} \alpha_{i} \Psi_{i}\left(\vec{x}^{j}\right) \right\}^{2}$$

Initial Parameter Bounds

• Preliminary optimization with 8 parameters with range determined using rough scans in G4Beamline with the reference particle

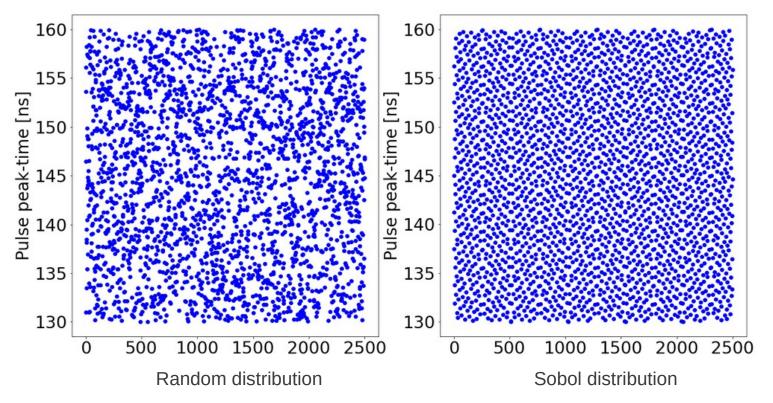


• Best guess input parameter range:

Parameter symbol	Physics Parameter	Lower bound	Upper bound
Theta	Injection angle (degrees)	47.38	47.45
Phi	Transverse angle (degrees)		5.9
InjR	Injection radius (mm)	40.0	40.4
Ζ	Longtudinal Injection coordinate (mm)	-437	-433
BPI	Kicker Field Strength (arb. unit)	-1.4	-0.2
KPT	Time of peak of Kicker Pulse (ns)	130	160
W	Width of the Kicker Pulse (ns)		55
WC Weak Current*100 (A)		100	700

Initial Distribution: Sobol Points

- Monte Carlo techniques rely on random distribution of samples
- Prone to clusters and empty spaces, slow convergence, probabilistic error bounds



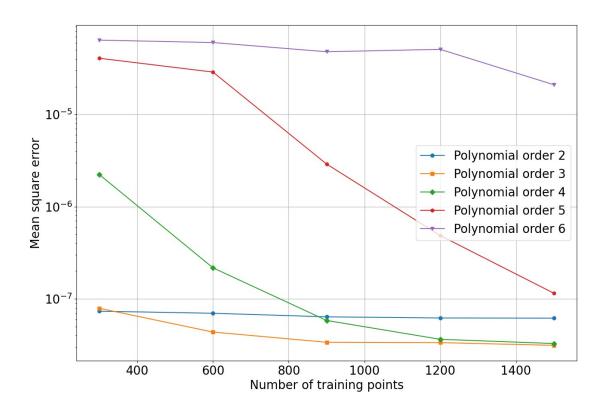
 Low discrepancy distributions like Sobol sequence preferred, deterministic error bounds, uniformly spans the given range

PCE Regression Analysis

- Run G4bl simulations with parameter sample space given by Sobol distribution
- For regression based estimation of coefficients, number of training samples is N=(d-1)P;
- P \rightarrow terms in polynomial expansion: $P = \frac{(p+d)!}{p!d!}$, d \rightarrow dimension, p \rightarrow polynomial degree
- Storage criteria:

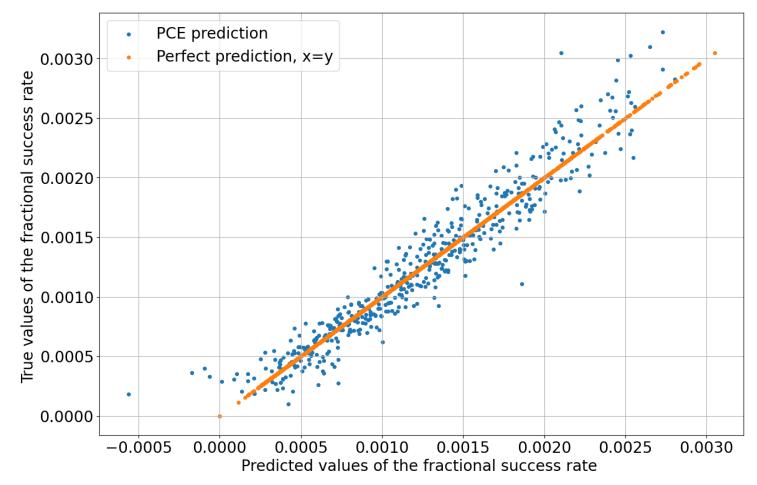
muon decaying/killed with -40mm<z<40mm and -0.5MeV<Pz<0.5MeV

- Python toolbox chaospy for generating expansion and regression fit
- Lowest MSE for poly order 3, poly order 4 converging fast
- ~1100 points needed for poly order 3, ~3500 points needed for poly order 4

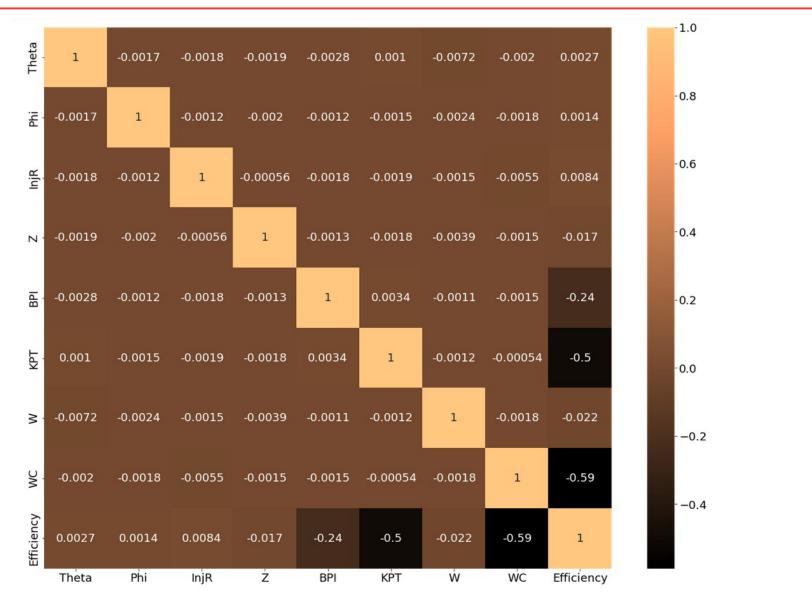


PCE Regression Analysis

 Comparison of true efficiency (orange) and model predicted efficiency (blue) for polynomial order 3

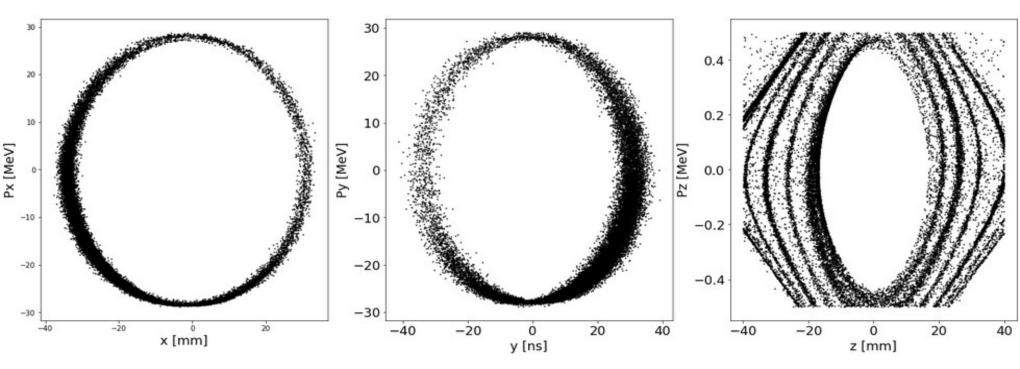


PCE Analysis Correlation Matrix



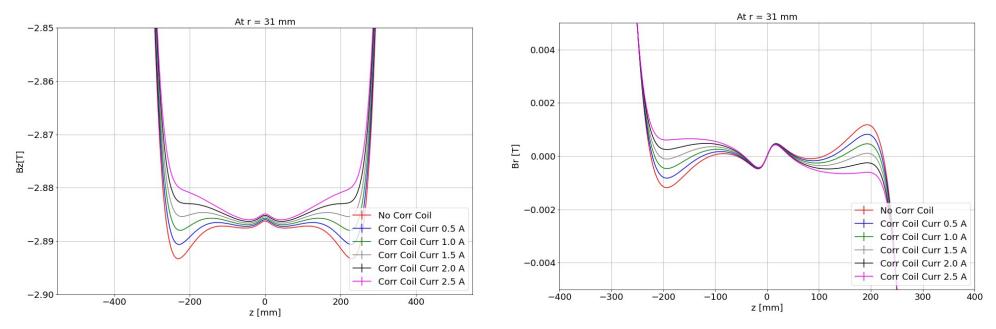
Current Status

- Need to generate muon distribution in storage region for detector design
- Currently trying to use the maximum efficiency parameters to generate distribution
- 3000 stored from 1M injected muons \rightarrow Extrapolating to generate larger distributions



Current Status

- Currently running the next iteration of optimization \rightarrow Excluded geometric parameters
- New parameter \rightarrow distance between the pair of kicker coils, current in the correction coil
- Correction coils needed to reduce field gradient at injection



• Reduction in CC current desirable to control heat dissipation

Summary

- Injection efficiency depends on a range of design parameter
- Off-axis beam injection simulation in G4Beamline
- Maximize injection efficiency, determine acceptable input variable range
- Multivariate optimization problem \rightarrow approximated by PCE based surrogate modeling
- Best modeled by polynomial degree 3, less sensitivity to geometric parameters
 → increase in training samples needed to reduce MSE
- Generate muon distribution in storage region based on the maximum efficiency parameters
- Optimize other input variables affecting injection efficiency

Thank You for Your Attention!

MuEDM Collaboration

Project funded by

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Federal Department of Economic Affairs, Education and Research EAER State Secretariat for Education, Research and Innovation SERI

Extra

Sensitivity indices: Example, when d=3

Response function representation: $Y = f(x_1, x_2, x_3) = f_0 + f_1(x_1) + f_2(x_2) + f_3(x_3) + f_{12}(x_1, x_2) + f_{13}(x_1, x_3) + f_{23}(x_2, x_3) + f_{123}(x_1, x_2, x_3)$

Total varaince: $D = \int_{Id} f^2(x_1, x_2, x_3) dx_1 dx_2 dx_3 - f_0^2$

 $= D_{1} + D_{2} + D_{3} + D_{12} + D_{13} + D_{23} + D_{123}$

with $D_1 = \int f_1^2(x_1) dx_1$, $D_2 = \int f_2^2(x_2) dx_2$

 $D_{12} = \int f_{12}^{2}(x_{1},x_{2}) dx_{1}dx_{2}$, $D_{23} = \int f_{23}^{2}(x_{2},x_{3}) dx_{2}dx_{3}$,..... and so on

Sensitivity indices: $S_1 = D_1/D$, $S_{12} = D_{12}/D$, $S_{123} = D_{123}/D$, etc

and

 $S_1 + S_2 + S_3 + \dots + S_{123} = 1$

Sensitivity Analysis in Surrogate Model

PCE expansion:
$$Y = \sum_{i=0}^{\infty} \alpha_i \Psi_i(\vec{x})$$
,

For input variables

 $(x_1, x_2, ..., x_d) \in I^d := [0, 1]^d$

Model response Y can be represented by

$$Y = f(x_1, x_2, ..., x_d) = f_0 + \sum_{i=1}^d f_i(x_i) + \sum_{1 \le i < j \le n} f_{ij}(x_i, x_j) + \dots + f_{12...d}(x_1, x_2, ..., x_d),$$

if:

$$1. \quad f_0 = \int_{I^d} f(\vec{x}) d\vec{x}$$

2.
$$\int_0^1 f_{i_1,i_2,...,i_s}(x_{i_1},x_{i_2},...,x_{i_s})dx_k = 0$$

where
$$k = i_i, ..., i_d$$
 and $s = 1, 2, ..., d$

 $(\vec{x}) = (x_1, x_2, ..., x_d)$, d-dimension

The variance of the function is: $D = \int_{I^d} f^2(\vec{x}) d\vec{x} - f_0^2$ Alternatively $D = \sum_{i=1}^d D_i + \sum_{1 \le i < j \le n} D_{ij} + \dots + D_{12\dots d}$

where

$$D_{i_1,i_2,...,i_s} = \int_{I^s} f_{i_1,i_2,...,i_s}^2(x_{i_1},x_{i_2},...,x_{i_s}) dx_{i_i} dx_{i_2}...dx_{i_s}$$

with $1 \le i_1 < i_s \le d$

Sobol sensitivity indices are defined as: $S_{i_{1},i_{2},...,i_{s}} = \frac{D_{i_{1},i_{2},...,i_{s}}}{D}$ and satisfy the condition $\sum_{i=1}^{d} S_{i} + \sum_{1 \le i < j \le n} S_{ij} + ... + S_{12...d} = 1$

Sensitivity indices: Results

- Python Chaospy toolbox has built-in functions to calculate sensitivity indices
- First order, second order and total sensitivity indices can be calculated
- The input parameter distribution should be scaled to range [0,1]

•	Main	Sensitivity	indices	for poly	order 3:
---	------	-------------	---------	----------	----------

Parameter symbol	Physics Parameter	Main sensitivity index, Polynomial degree 3	
Theta	Injection angle (degrees)	3.39230879e-08	
Phi	Transverse angle (degrees)	3.86979007e-07	
InjR	Injection radius (mm)	1.88544294e-06	
Z	Longtudinal Injection coordinate (mm)	4.16966789e-08	
BPI	Kicker Field Strength (arb. unit)	1.40754537e-04	Sum = 0.9624
KPT	Time of peak of Kicker Pulse (ns)	9.03986321e-04	
W	Width of the Kicker Pulse (ns)	4.89511202e-02	
WC	Weak Current*100 (A)	9.12374997e-01	

• Relative sensitivities, dependent on initial range provided

Sensitivity indices: From PCE coefficients

$$\hat{S}_{i_1,i_2,\ldots,i_s} = \frac{1}{\hat{D}} \sum_{\boldsymbol{i} \in I_{i_1,i_2,\ldots,i_s}} \alpha_{\boldsymbol{i}}^2 \langle \Psi_{\boldsymbol{i}}^2 \rangle$$

where

$$I_{i_1,i_2,...,i_s} = \begin{cases} \mathbf{i} : & i_k > 0 \forall k = 1,...,n, k \in (i_1,...,i_s) \\ & i_k = 0 \forall k = 1,...,n, k \notin (i_1,...,i_s) \end{cases}$$

The variance, \hat{D} is given by

$$\hat{D} = \sum_{j=1}^{P-1} \alpha_{\boldsymbol{i}_j}^2 \langle \Psi_{\boldsymbol{i}_j}^2 \rangle.$$

From this, the main and total sensitivity is computed as

$$\hat{S}_{j} = \frac{1}{\hat{D}} \sum_{i \in I_{j}} \alpha_{i}^{2} \langle \Psi_{i}^{2} \rangle$$

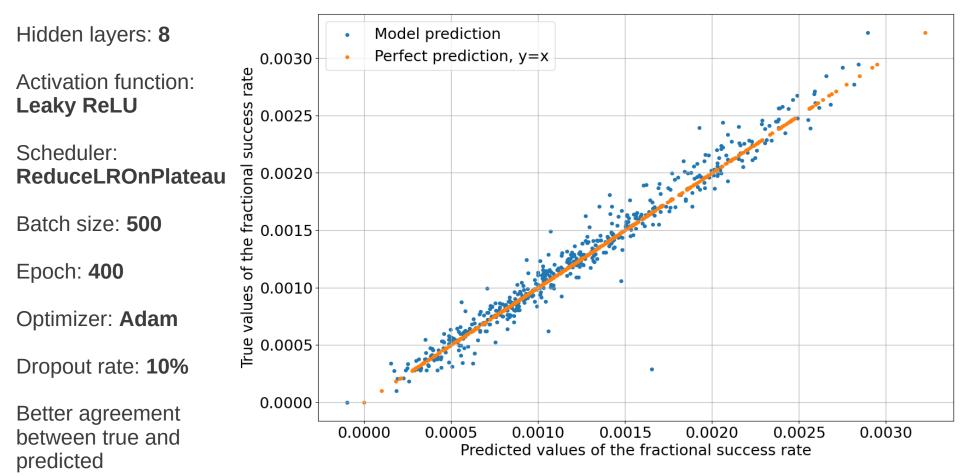
where $I_j = \{i = (i_1, i_2, ..., i_d) : i_k > 0 \forall k = j \land i_k = 0 \forall k \neq j\}$ and

$$\hat{S}_{j}^{T} = \frac{1}{\hat{D}} \sum_{i \in I_{j}} \alpha_{i}^{2} \langle \Psi_{i}^{2} \rangle$$

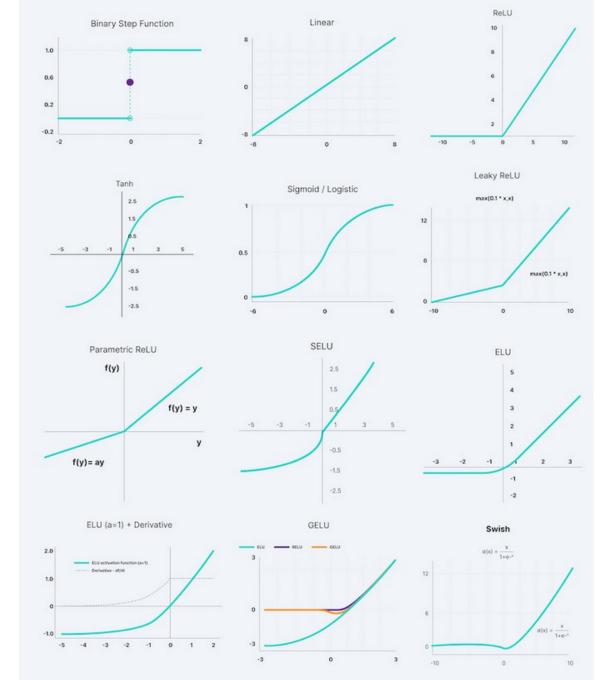
where $I_j = \{i = (i_1, i_2, ..., i_d) : i_j > 0\}$, respectively.

Neural Network Regression

• No. of neurons: **512**



Neural Network activation functions



Number of expansion coefficients, P and Integration points (sample size), N

d	р	Р	Ν
6	3	84	420
6	4	210	1050
6	5	462	2310
7	3	120	720
7	4	330	1980
7	5	792	4752
8	3	165	1155
8	4	495	3465
8	5	1287	9009