The SST-1M stereoscopic Cherenkov telescope system

M. Heller on behalf of the SSF-1M collaboration

The SST-1M stereoscopic Cherenkov telescope system

- Outline
- The SST-1M Project
+ The SST-1M telescopes at the Ondrejov observatory
- Telescope operation and commissioning
+ First Science results
M. Heller on behalf of the SSF-1M collaboration

The SST-1M Project

- Consortium of research institutions from Czech Republic, Poland, and Switzerland
- Initially developed for Cherenkov Telescope Array as prototypes of SSTs
- Reviewed and satisfied all CTA requirements, nevertheless an other design was selected
- Two full telescopes built and assembled:
- One prototype
- One pre-production
- Improved camera mechanics and entrance window coating
 POLISH ACADEMY OF SCIENCES

The SST-1M telescope

UNIVERSITÉ

 DE GENĖVE faculté des sciences- Davies-Cotton proven optical design
- Innovative SiPM-based camera
- Digital electronics with fully digital trigger and readout architecture
- Fully programmable
* Highly performing large-area SiPMs with dedicated slow control
- Optimized for gamma-ray sensitivity above 500 GeV in stereo mode
- Lightweight ($\sim 8.6 \mathrm{t}$) and compact structure;
- Designed for fully robotic operation with minimal maintenance in harsh environment
- Low Cost

	Focal Length	$5600 \pm 5 \mathrm{~mm}$
	f / D	1.4
	Dish diameter	4 m
	Mirror Area (*)	$9.42 \mathrm{~m}^{2}$
	Mirror Effective Area(*)	$6.47 \mathrm{~m}^{2}$
	Hexagonal Mirror facets	$780 \pm 3 \mathrm{~mm}$
	Preliminary on-axis PSF real optical parameters	0.07°
	PSF (80\% of FoV@ 4° off-axis)(**)	0.21°
400000000000000000	Camera (depth \times width)	$60 \mathrm{~cm} \times 90 \mathrm{~cm}$
	Total pixel number	1296
	Pixel linear size	23.2 mm
	Pixel angular size	$0.24{ }^{\circ}$
	FoV	$9.1{ }^{\circ}$
	Photosensors PDE	> 30\%
	Sampling frequency	250 MHz
	Readout rate	$0.6-1 \mathrm{kHz}$
	Time Spread RMS	$<0.25 \mathrm{~ns}$

The SST-1M stereoscopic telescope system

- Two telescopes, separated by ~ 150 m, fully deployed on the test and validation site, the Ondrejov Observatory in Czech Republic (~40 km from Prague), 550 m.a.s.l.

Simulation and analysis pipelines

- Developed dedicated pipeline for the analysis of the SST-1M data: mono, stereo, MC and real data.
* The backbone of the data analysis pipeline is ctapipe (maintain by CTAO) and inspired by Istchain (maintain by LST collaboration)
- For calibration specific to the SST-1M telescope, methods derive from digicampipe (C. Alispach et al 2020 JINST 15 P11010)
- Stereo treatment based

Regression and on magic-ctapipe

The SST-1M commissioning

UNIVERSITÉ DE GENÊVE faculté des sciences

Extraction of telescope parameters

- Before running any simulation, configurations must be tuned based on commissioning results:
- Mirror reflectivity
- Entrance window transmissivity
- Different sources of noise:
- Night sky background
- Electronics
- Sensor (DCR, optical cross talk)

Gain difference explained by faulty cables, fixed this summer at UniGe

X talk

7

Dark count rate

Tavernier et al. [PoS(ICRC2023)741]

Simulation and analysis pipelines

MC tuning

- Configuration parameters tuned to minimize MC/real data mismatch
- Mirror reflectivity
- Optical point spread function
- Pixel characteristics: gain, noise
- Night Sky Background level
+ ...

Pixel response

Optical PSF

The SST-1M commissioning

Extraction of telescope parameters

- Muons are very powerful tools to calibrate the optical throughput of the telescope
* Radius related to Cherenkov angle, i.e. muon velocity and refraction index
- Intensity is related to optical efficiency of the telescope
- Parameters extracted serve to tune the MC
- Optical throughput
- Optical point spread function
- Yet to be fully propagated to simulation configuration

Simulation and analysis

MC data comparison

- Comparison of selected Hillas parameters for data taken on June 12, 2023 at zenith angles between 18° and 22° with diffuse proton MC re-weighted on the CR spectrum.
- Distribution of MC simulated events scaled by a factor of 1.04 to account for the actual atmospheric transparency.

Jurysek et al. [PoS(ICRC2023)592]

Simulation and analysis MC tuning

- Differential rate of point-like gamma rays with Crab Nebula spectrum seen with both telescopes

11

Jurysek et al. [PoS(ICRC2023)592]

Instrument response function

- Low altitude of the site limits the energy threshold to $\sim 1 \mathrm{TeV}$
- Working in stereo is key to improve performance
- Better direction reconstruction especially for "symmetric" showers
- Better energy resolution and lower bias due to better reconstruction of the shower geometry, in particular its impact parameter
- Better background rejection due to increase in shower features extraction

Jurysek et al. [PoS(ICRC2023)592]

Instrument response function

Sensitivity vs. Zenith angle

- Improvements on direction and energy reconstruction added to a better background rejection naturally leads to better sensitivity
- Given the low altitude, observing as close as possible to the zenith is very important !

The SST-1M operation

- Remote and nearly fully automatic observations

SST-1M master controller

Drive system control

 Gal pasions siep cerimes

Active mirror control

Photo detector plane control and monitoring

Digital readout configuration

DAQ control and monitoring

Stereo observations

- Both cameras connected to White Rabbit switch for synchronisation, system still being commissioned
- Stereo trigger managed by Software Array Trigger (SWAT), soon deployed with ACS

Observations

Stereoscopic observation

- White rabbit was not fully commissioned at the time of data taking, coincidences derived from time clustering of events
- Crab stereo data set acquired with two wobbles configuration
- Crab detected with 5.21σ significance in 2 h 38 (MC prediction is 5σ in 2 h at 40 deg Zenith)

Conclusion and Prospects

- Finalise the commissioning for the stereo observations
+ Telescope description
+ Synchronisation
+ Fully remote and automatised telescope control
- The SST-1M concept has already proven to meet the performance requirements it was designed for
- Continue with scientific program:
- Crab observation
- Monitoring of the brightest blazars
- Recent 5σ detection of extragalactic blazar 1ES1959+650
- Accumulating data for Mrk 421, 501
\uparrow Exploring advanced triggering and measurements methods exploiting the fully digital readout and large field of view
- The collaboration is exploring new possibilities for observation sites:
+ Two of them can only do so much ...
+ ... but when complementing another Cherenkov of CR observatory, they are a great asset.

