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Outline of the talk

Current status of the anomalous magnetic moment of the muon

Introduction to holographic QCD

Predictions from holographic QCD
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Anomalous magnetic moment

Angular momentum L of charged particles produces magnetic moment

µ⃗ = µBL⃗ with µB =
e

2m
(ℏ = 1, c = 1)

Fundamental point particles with spin S have intrinsic magnetic moment with
anomalous g-factor

µ⃗ = gµBS⃗

Special relativity plus quantum mechanics (Dirac equation): g = 2

QFT corrections parametrized by a = 1
2
(g − 2)

Field theory definition:

l(p2)

l(p1)

γ(q) = (−ie)ū(p2)
[
γµFE(q

2) + i
σµνqν
2mµ

FM (q2)

]
u(p1)

with q = p2 − p1 and a = FM (0)
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Status of anomalous magnetic moments
Perfect agreement for the electron to O(α5)

However 4.2σ discrepancy for muon [BNL 2004 and FNL 2021 vs. Aoyama et al. 2020]

aexp
µ = (116 592 061± 41)× 10−11

aSM
µ = (116 591 810± 43)× 10−11

17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5
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a × 10
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1165900

Standard Model Experiment
Average

BNL g-2

FNAL g-2

New result consistent and uncertainties halved (5.1σ) [FNL 2023 Preprint]
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Standard Model prediction [Aoyama et al., 2006.04822]

Muon 200 times heavier than electron ⇒ more sensitive to non-QED and BSM physics

aSM
µ = aQED

µ + aEW
µ + aHVP

µ + aHLbL
µ = (116 591 810± 43)× 10−11

aQED
µ = (116 584 718.931± 0.104)× 10−11

aEW
µ = (153.6± 1.0)× 10−11

aHVP
µ = (6845± 40)× 10−11 (0.6% uncertainty)

aHLbL
µ = (92± 19)× 10−11 (20% uncertainty!)
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Holographic QCD

Strongly coupled gauge theory in D dimensions at large N
is dual to a weakly coupled theory of gravity in D+1 dimensions
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Hard wall model (HW1)

In bottom-up hQCD models, pions & (axial) vector mesons described by 5d-YM fields
FL,R

MN = FV
MN ∓FA

MN in AdS5 space with metric

ds2 = z−2(ηµνdx
µdxν − dz2)

To make the theory confining a finite (hard wall) cutoff is introduced at z = z0

The 5-dimensional Yang-Mills action reads

SYM = − 1

4g25

∫
d4x

∫ z0

0

dz
√
−g gPRgQS tr

(
FL

PQFL
RS + FR

PQFR
RS

)
with P,Q,R, S = 0, . . . , 3, z and FMN = ∂MBN − ∂NBM − i[BM ,BN ]

In the HW1 model we additionally have a minimally coupled scalar field

SX =

∫
d4x

∫ z0

0

dz
√
−g tr

(
|DX|2 + 3|X|2

)
where DX = ∂X − iBLX + iXBR and X = eiπ

a(x,z)ta [ 1
2
v(z)]eiπ

a(x,z)ta , with
v(z) = mqz + σz3, where mq is the quark mass and σ the quark condensate.
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Anomalous TFFs from holographic QCD

Anomalies follow uniquely from 5-dimensional Chern-Simons term:

SL
CS − SR

CS, SCS =
Nc

24π2

∫
tr
(
BF2 − i

2
B3F − 1

10
B5

)

The pion transition form factor is given by

Fπ0γ∗γ∗(Q2
1, Q

2
2) = − Nc

12π2fπ

∫ z0

0

dz J (Q1, z)J (Q2, z)Ψ(z) + b.t.

with bulk-to-boundary propagator J and holographic pion profile Ψ

The amplitude for axial-vector mesons a(n)
µ decaying into two virtual photons

following from the Chern-Simons action has the form

Ma = i
Nc

4π2
tr(Q2ta) ϵµ(1)ϵ

ν
(2)ϵ

∗ρ
A ϵµνρσ

[
qσ(2)Q

2
1An(Q

2
1, Q

2
2)− qσ(1)Q

2
2An(Q

2
2, Q

2
1)
]

where

An(Q
2
1, Q

2
2) = 2g5

Q2
1

∫ z0
0
dz

[
d
dz
J (Q1, z)

]
J (Q2, z)ψ

A
n (z)

Landau-Yang theorem (AV→ γγ is forbidden) realized by J ′(Q, z) = 0 for Q2 = 0
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Short-distance constraints on TFFs

Amazingly, bottom-up models with asymptotic AdS5 geometry reproduce
asymptotic momentum dependence of pQCD [Brodsky & Lepage 1979-81] for PS and AV

Pseudoscalars [Grigoryan & Radyushkin, PRD76,77,78 (2007-8)]

FHW1
π0γ∗γ∗ (Q

2
1, Q

2
2) →

2fπ

Q2

√
1− w2

∫ ∞

0
dξ ξ3K1(ξ

√
1 + w)K1(ξ

√
1− w)

=
2fπ

Q2

[
1

w2
−

1− w2

2w3
ln

1 + w

1− w

]
with Q2 = 1

2
(Q2

1 +Q2
2), w = (Q2

1 −Q2
2)/(Q

2
1 +Q2

2),
corresponds to the asymptotic behavior

F∞(Q2, 0) =
2fπ

Q2
, F∞(Q2, Q2) =

2fπ

3Q2

Axial-vector mesons [JL & Rebhan, 1912.01596]
(agreeing with later pQCD result [Hoferichter & Stoffer 2004.06127]):

An(Q
2
1, Q

2
2) →

12π2FA
n

NcQ4

1

w4

[
w(3− 2w) +

1

2
(w + 3)(1− w) ln

1− w

1 + w

]
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Other hQCD models

Hirn-Sanz model (HW2)

No scalar field X
Chiral symmetry breaking through boundary conditions

Soft-wall model (SW)

No scalar field X
No Hard-wall cutoff (z0 → ∞)
Confinement through non-trivial dilaton

Sakai-Sugimoto model (SS)

No scalar field X
Top-down model (from 10d string-theory/supergravity)
Not asymptotically AdS5

Confinement and chiral symmetry breaking through brane construction

10 / 17



Holographic TFFs and experimental data

Single-virtual pion TFF:
[JL, J. Mager & A. Rebhan, 1906.11795]

(data from Danilkin et al., Prog.Part.Nucl.Phys. 107 (2019) 20)

SS

HW1

HW2

SW

DRV4

1 2 3 4
Q
2 [GeV2 ]

0.05

0.1

0.15

0.2

0.25

0.3

F(Q2,0) [GeV-1 ]

Danilkin et al. (DRV) fit below 4 GeV2

bracketed by HW1 and HW2!

Single-virtual axial TFF:
[JL & A. Rebhan, 1912.01596]

dipole fit of L3 data for f1(1285) (gray band)

vs. SS, HW1, and HW2 models:

1 2 3 4 5 6
Q 1

2[GeV]

0.05

0.10

0.15

0.20

0.25

0.30

Q 1
2

A(Q 1
2
,0) / A(0,0)

A(0, 0)L3 exp.
f1(1285)

= 16.6(1.5)GeV−2

Roig & Sanchez-Puertas, 1910.02881:

A(0, 0)a1(1230) = 19.3(5.0)GeV−2

hQCD results: HW1 HW2

|A(0, 0)| [GeV−2] 21.04 16.63
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Hadronic light-by-light scattering

[Colangelo et al. 1506.01386]
Lorentz- and gauge invariance: interaction of four electromagnetic currents described
by 12 scalar functions Π̄i

aHLbL
µ =

2α3

3π2

∫ ∞

0

dQ1

∫ ∞

0

dQ2

∫ 1

−1

dτ
√

1− τ2Q3
1Q

3
2

12∑
i=1

Ti(Q1, Q2, τ)Π̄i(Q1, Q2, τ)

PS only contribute to Π̄1 (and Π̄2, Π̄3 through crossing symmetry)

Π̄PS
1 = −

∞∑
n=1

Fπ0γ∗γ∗(Q2
1, Q

2
2)Fπ0γ∗γ(Q

2
3, 0)

Q2
3 +m2

π

AV contribute to all 12. Π̄1 has contribution from longitudinal component

Π̄AV
1 = −

g25
2π4

∞∑
n=1

∫ z0

0
dz

[
d

dz
J (Q, z)

]
J (Q, z)ψA

n (z)
1

(MA
n Q3)2

∫ z0

0
dz′

[
d

dz′
J (Q3, z

′)

]
ψA
n (z′),
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Melnikov-Vainshtein short-distance constraint

Asymptotic (high-energy) regime not expected to give large contribution to HLbL
but important for error estimate

Short-distance constraint (SDC) derived from OPE by Melnikov & Vainshtein

lim
Q3→∞

lim
Q→∞

Q2Q2
3Π̄1(Q,Q,Q3) = − 2

3π2

can be used to see if a particular set of intermediate states is sufficient

Only 3 known ways to satisfy with hadronic degrees of freedom:

Replacing the single-virtual TFF by hand (MV)
Summing an infinite number of excited PS mesons in a Regge model
(Colangelo et al. )
Summing an infinite number of AV mesons in holographic models (LR,
Cappiello et al.)
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Axial-vector contributions to SDC

Infinite tower of axial-vector mesons responsible for satisfying the longitudinal SDC

MV-SDC lim
Q3→∞

lim
Q→∞

Q2Q2
3Π̄1(Q,Q,Q3) = −

2

3π2
: 100% for HW1 and HW2(UV-fit)

0 1 2 3 4 5
Q 3[GeV]

0.2

0.4

0.6

0.8

1.0

-(3π2/2) Q2 Q 3
2
Π1(Q,Q,Q3)

black line: infinite sum
colored lines: first 5 axial-vector modes

SDC for symmetric limit Q2
1 = Q2

2 = Q2
3 → ∞ satisfied qualitatively,

but quantitatively only at max. 80% level (for HW1 and HW2(UV-fit))
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Contributions to muon g − 2

aAV
µ =

∫∞
0 dQ1

∫∞
0 dQ2

∫ 1
−1 dτ ρa(Q1, Q2, τ)

E.g. at τ = 0:

0.5 1.0 1.5 2.0 2.5 3.0
Q [GeV]

2.×10-11

4.×10-11

6.×10-11

8.×10-11

1.×10-10

1.2×10-10

ρa(Q,Q,0)

Strongly dominated by lowest axials, but nonnegligible (25%) contribution from higher modes

(z0 s.t. mρ = 775 MeV, fπ = 92.4 MeV; degenerate a1, f1, f ′1)
HW1 (100% LSDC) HW2 (62% LSDC) SM

aPS
µ [π0 + η + η′]× 1011 99 [65+18+16] 84 [57+15+12] 93.8(4.0)
aAV
µ [L+ T ]× 1011 41 [23+18] 29 [17+12] 21(16) [15(10)+6(6)]
aPS+AV
µ × 1011 140 112 115(20)

(compare with MV model: longitudinal contribution estimated ∼ 38 ×10−11)
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Additional holographic predictions

Effect of finite quark masses (in HW1 model) and perturbative corrections
(estimated by reducing g25 by 15%) [JL & A. Rebhan, 2108.12345]

aP
∗

µ = (3.2 . . . 7.2)× 10−11

aAµ(L) = (20.8 . . . 25.0)× 10−11

aAµ = (36.6 . . . 43.3)× 10−11

aA+P∗
µ = (39.8 . . . 50.5)× 10−11

MV-SDC is still satisfied through tower of axial-vector mesons; massive pions only
have subleading contribution ∝ log(Q2

3)/Q
4
3Q

2

Estimate of glueball contribution (in SS model) [JL, Dissertation]

Glueballs are dual to fluctuations of the background geometry
Brane-embedding determines glueball-meson interaction
Combined with the model’s VMD this leads to surprisingly large radiative
glueball decays (decay rates in keV instead of eV)
However glueball contribution is negligible

aGµ ≲ 0.16× 10−11
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Conclusions

hQCD is not QCD, but sophisticated toy model that can give clues on

– how short-distance constraints can be implemented at the hadronic level
important fundamental role of axial-vector mesons ↔ anomaly

– a semi-quantitative estimates of the ballparks to be expected
(HW1–HW2 brackets experimental results for pion TFF!)

axial-vector contributions more important numerically than estimated
previously

aAV
µ [L+ T ] = 35(6) [20(3) + 15(3)]× 10−11 for HW1–HW2

vs. WP: aSDC+axials
µ = 21(16) [15(10) + 6(6)]× 10−11

with quark masses MV-SDC still completely satisfied through tower of
axial-vector mesons; massive pions have subleading contribution

– an estimate of the glueball contribution
although glueballs have surprisingly large radiative decays their contribution
is negligible at the current uncertainty
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