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Holographic CFT
A CFT whose dual gravity theory that has a low-energy EFT description. 

A few (but not all) properties associated to them are:

o Large central charge (large-N), which leads to a large number of d.o.f. (BHs)

o Sparse spectrum (degeneracy of light operators are not controlled by N).

o Factorization of correlation functions, i.e., Generalized Free Fields.(!!)

o … 

See, for example:
Heemskerk, J. Penedones, J. Polchinski, and J. Sully 2009 

El-Showk and Papadodimas 2011 



Holographic CFT
A CFT whose dual gravity theory that has a low-energy EFT description. 

A few (but not all) properties associated to them are:

o Large central charge (large-N), which leads to a large number of d.o.f. (BHs)

o Sparse spectrum (degeneracy of light operators are not controlled by N).

o Factorization of correlation functions, i.e., Generalized Free Fields.(!!)

o … 

How many conditions do I need to impose?
How stringent are the conditions? 



o Define gravity via the dual CFT2

o Identify necessary conditions

o Determine possible designs we can achieve

o Focus on CFT2 that we can quantify: 
Symmetric Product Orbifolds 

Gravitational 
Theory 
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Designing AdS3 Quantum Gravity



Classification of Symmetric Product Orbifolds

Deformations of Symmetric Product Orbifolds 



Classification of Symmetric Product Orbifolds

o Implement conditions

o Precise outcomes (with surprises)

A. Belin, J. Gomes, C. Keller, AC, 2016, 2018
A. Belin, C. Keller, B. Mühlmann, AC, 2019 (x2)
A. Belin, N. Benjamin, C. Keller and S. Harrison, AC, 2020
N. Benjamin, S. Bintanja, J. Hollander, AC 2022



Deformations and New Flavours of AdS/CFT

Strong 
coupling

Weak
coupling

𝜆 Φ(",")

o New features in the design of AdS/CFT

o Breaking 𝑆𝑦𝑚% 𝐶

L. Apolo, A. Belin, S. Bintanja, C. Keller, AC 
2204.07590 and 2212.07436 



N copies of a unitary 
and compact CFT2. 
𝐶 = seed theory

Symmetric Product Orbifolds

𝑆𝑦𝑚! 𝐶 =
𝐶⊗!

𝑆!

𝐶
𝐶

𝐶 …
…

Orbifold by the permutation group 𝑆!



Symmetric Product Orbifolds

𝑆𝑦𝑚! 𝐶 =
𝐶⊗!

𝑆!

𝐶
𝐶

𝐶 …
…

The orbifold introduces two class of states: 

o untwisted sector: it keeps states that are invariant under 𝑆!.

o twisted sectors:  new states labelled by conjugacy classes of 𝑆!.

Orbifold by the permutation group 𝑆!

N copies of a unitary 
and compact CFT2. 
𝐶 = seed theory



Symmetric Product Orbifolds

o Appeal: Mathematical and analytic control, e.g., DMVV formula. 

o Familiarity: D1D5 CFT. 

o Universality: large-N behavior is robust.

o Utility: compelling features for AdS/CFT.

𝐶

𝐶……



Symmetric Product Orbifolds

𝐶

𝐶……

Today: non-universal properties. 
Demonstrate that there are different 

classes, and their features challenge the 
lore of AdS/CFT. 

o Appeal: Mathematical and analytic control, e.g., DMVV formula. 

o Familiarity: D1D5 CFT. 

o Utility: compelling features for AdS/CFT.

o Universality: large-N behavior is robust.



Universal Aspects

𝑆𝑦𝑚! 𝐶 =
𝐶⊗!

𝑆!

𝐶
𝐶

𝐶 …
…

All symmetric product orbifolds satisfy:

o Correlation functions comply with large-N factorization.

o Hawking-Page transition at large-N.

o Higher spin currents due to orbifold structure.

o Universal Hagedorn growth of light states.

[Pakman et.al., Mathur et.al., Belin et.al., Hael et.al., …]

[Keller 2011; Hartman, Keller, Stoica 2014; Benjamin et.al. 2015]

[Keller 2011] 

𝑑#$$ Δ ∼ 𝑒%&' ( where   Δ ≫ 1, Δ ∼ 𝑂(𝑁)) and 𝑏 ∼ 𝑂(𝑁))
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Universal Aspects

𝑆𝑦𝑚! 𝐶 =
𝐶⊗!

𝑆!

𝐶
𝐶

𝐶 …
…

All symmetric product orbifolds satisfy:

o Correlation functions comply with large-N factorization.

o Hawking-Page transition at large-N.

o Higher spin currents due to orbifold structure.

o Universal Hagedorn growth of light states.

AdS/CFT interpretation: Dual of 𝑆𝑦𝑚! 𝐶 looks like 
a tensionless string theory (or higher spin gravity). 



o Higher spin currents due to orbifold structure.

o Universal Hagedorn growth of light states.

Question: Which 𝑆𝑦𝑚! 𝐶 could admit in their moduli space a dual supergravity point? 

Strategy: Impose necessary conditions. Identify which 𝑆𝑦𝑚! 𝐶 comply with them.

𝑆𝑦𝑚! 𝐶
(weak)

Strong 
coupling
Λ"#$%&' ≫ Λ()*

Λ"#$%&' ∼ Λ()*

𝜆 Φ(",")

Moduli space: set of exactly marginal deformations



Strong 
coupling

Weak
coupling

Moduli space: set of exactly marginal deformations

At large-N, classify them 
according to:
o Moduli (deformation)
o BPS spectrum 

𝜆 Φ(",")

Some requirements:
o Large-N: 𝑐 = &ℓ

()!
≫ 1

o Sparse spectrum
o Large gap spectrum
o …



Neccesary conditions
o Criterion 1: Existence of suitable moduli (single trace, twisted, BPS): 𝜆 Φ(",")

"*.*,.

o Criterion 2: Sparseness condition on the elliptic genera (index that captures ¼- BPS states).



Neccesary conditions
o Criterion 1: Existence of suitable moduli (single trace, twisted, BPS): 𝜆 Φ(",")

"*.*,.

Three requirements on this operator Φ(",")
"*.*,. :

o ½-BPS: Supersymmetry protects the deformation everywhere in the conformal manifold. 

o Twisted: break the orbifold structure of 𝑆𝑦𝑚% 𝐶 .

o Single-trace: have an effect at leading order at large-N.



Neccesary conditions
o Criterion 1: Existence of suitable moduli (single trace, twisted, BPS): 𝜆 Φ(",")

"*.*,.

o Criterion 2: Sparseness condition on the elliptic genera (index that captures ¼- BPS states).

𝜒 𝜏, 𝑧; 𝐶 = Tr** −1 +𝑞,+-
.
%/ 𝑦0+ ;𝑞,+-

.
%/ =<

1,$

𝑑 𝑛, 𝑙 𝑞1𝑦$

𝑍 𝜌, 𝜏, 𝑧 =<
!

𝜒 𝜏, 𝑧; 𝑆𝑦𝑚! 𝐶 𝑒%&34! = A
1,$,!∈ℤ
!≻)

1
1 − 𝑞1𝑦$𝑝! 8 1!,$

In the NS sector, for 𝑆𝑦𝑚% 𝐶 , we will distinguish them by the growth of light states: 

o Slow growth: 𝑑 Δ ∼ 𝑒-".# with 𝛾 < 1

o Fast growth: 𝑑 Δ ∼ 𝑒-$.
For the regime 
Δ ≫ 1, 𝑁 ≫ 1,

Δ ∼ 𝑂(𝑁/)



Neccesary conditions
o Criterion 1: Existence of suitable moduli (single trace, twisted, BPS).

o Criterion 2: Sparseness condition on the elliptic genera (index that captures ¼- BPS states).

Type I:
Both criteria

Type II:
Only criterion 1

Type III:
Neither criteria

Type IV:
Only criterion 2

Based on these two criteria, we will classify 𝑆𝑦𝑚% 𝐶 theories, and label them as



Neccesary conditions

1. We proved that both criteria (independently) imply that seed theory must have

1 ≤ 𝑐/ ≤ 6 N CFTs
𝐶/

𝐶/

…
…

𝐶/

o Criterion 1: Existence of suitable moduli (single trace, twisted, BPS).

o Criterion 2: Sparseness condition on the elliptic genera (index that captures ¼-BPS states).



Neccesary conditions

1. We proved that both criteria (independently) imply that seed theory must have

1 ≤ 𝑐/ ≤ 6

2. Criterion 2 can be done systematically and is exhaustive. 

N CFTs
𝐶/

𝐶/

…
…

𝐶/

o Criterion 1: Existence of suitable moduli (single trace, twisted, BPS).

o Criterion 2: Sparseness condition on the elliptic genera (index that captures ¼-BPS states).



Neccesary conditions

1. We proved that both criteria (independently) imply that seed theory must have

1 ≤ 𝑐/ ≤ 6

2. Criterion 2 can be done systematically and is exhaustive. 

3. If Criterion 2 is satisfied, we proved that one always gets

𝑑,
-9:;

Δ ∼ 𝑒 ( where   Δ ≫ 1, Δ ∼ 𝑂(𝑁))

N CFTs
𝐶/

𝐶/

…
…

𝐶/

o Criterion 1: Existence of suitable moduli (single trace, twisted, BPS).

o Criterion 2: Sparseness condition on the elliptic genera (index that captures ¼-BPS states).



Classification

Type I:
Both criteria

Type II:
Only criterion 1

Type III:
Neither criteria

Type IV:
Only criterion 2

Generic, most abundant. 
They will never lead to a supergravity point in moduli space.

Strange and counter-intuitive. 
Moduli exists, but Hagedorn behavior persists. 

Unicorns. 
No unitary example yet. Modular invariance does not rule it out. 

Needles in a haystack. 
Comply with necessary conditions compatible with 
a holographic CFT.



Classification
Needles in a haystack. 
Comply with necessary conditions compatible with 
a holographic CFT.

Generic, most abundant. 
They will never lead to a supergravity point in moduli space.

Strange and counter-intuitive. 
Moduli exists, but Hagedorn behavior persists. 

Unicorns. 
No unitary example yet. Modular invariance does not rule it out. 

Type I:
Both criteria

Type II:
Only criterion 1

Type III:
Neither criteria

Type IV:
Only criterion 2



Summary

1 𝑐/3 6 Type IIIType I Type I, II, III

N CFTs
𝐶/

𝐶/

…
…

𝐶/



Summary

1 𝑐/3 6 Type IIIType I Type I, II, III

Comments:

o Only consider CFTs that are unitary and compact.

o Assume that the elliptic genus does not vanish.

o D1D5 on K3 sits at 𝑐) = 6.

o Search between 1 ≤ 𝑐) < 3 is exhaustive: N=2 Minimal Models.

o Search between 3 ≤ 𝑐) ≤ 6 is not exhaustive (but systematic). 

N CFTs
𝐶/

𝐶/

…
…

𝐶/



Type I: Examples

ADE

Series k untwisted moduli twisted moduli single trace twisted

A2 1 1 28 1 twist 5, 1 twist 7

A3 2 3 26 1 twist 3, 1 twist 4, 1 twist 5

A5 4 9 24 1 twist 2, 1 twist 3, 1 twist 4

Ak+1 odd, � 3 P (k + 2)� 2 9 1 twist 3

Ak+1 even, � 6 P (k + 2)� 2 10 +

k

2+2P
r=1

P (r) 1 twist 2, 1 twist 3

D4 4 6 20 1 twist 2, 2 twist 3, 1 twist 4

D k

2+2 0 mod 4, � 8 P (k2 + 1) + P (k4 + 1) 8 +

k

4+1P
r=1

P (r) 1 twist 2, 1 twist 3

D k

2+2 2 mod 4, � 6 P (k2 + 1) 7 1 twist 3

E6 10 4 5 1 twist 2

E7 16 6 5 1 twist 2

E8 28 6 5 1 twist 2

Table 1: Number of moduli for symmetric orbifolds of the ADE minimal models.
We always take N large enough so that the moduli have converged. P (n) is the

integers partition function, i.e.
1P

n=0
P (n)qn =

1Q
n=1

1
(1�qn) .

4 The landscape of symmetric orbifold theories

4.1 A conjecture on the landscape

In the prior sections we established that the elliptic genus of any minimal model can be

unwrapped to give a weak Jacobi form of index t with maximal polar term q
0
y
b that is slow

growing, where t and b are related by

c =
6b2

t
. (4.1)

Let us now address the converse of that statement: Does every slow growing form come from

the elliptic genus of a N = (2, 2) CFT?

Before we can make a precise statement, let us first discuss several qualifications. First

we note that due to (2.9), any unwrapping of an elliptic genus automatically gives

t

b
2 Z . (4.2)

Any conjecture we are making can thus only hold for wJf that satisfy (4.2).

Next, we note that slow growing wJf form a vector space, whereas CFTs do not. The

best we can hope for is thus that elliptic genera of minimal models may give a basis for the

18

Necessary conditions:
o Criterion 1: Exactly marginal operator 
o Criterion 2: Sparse spectrum for elliptic genera 

N=2 Virasoro Minimal Models 
𝑐/ =

&0
01(

< 3
where  𝑘 = 1, 2, …



Strong 
coupling

Weak
coupling

o 𝑐 = &ℓ
()!

≫ 1

o Few states

o … 

Moduli space: set of exactly marginal deformations

𝜆 Φ(",")

At large-N, classify them 
according to:
o Moduli (deformation): 

single trace+twisted
o Sparse BPS spectrum 
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We always take N large enough so that the moduli have converged. P (n) is the
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n=0
P (n)qn =
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n=1

1
(1�qn) .
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4.1 A conjecture on the landscape
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unwrapped to give a weak Jacobi form of index t with maximal polar term q
0
y
b that is slow

growing, where t and b are related by

c =
6b2

t
. (4.1)

Let us now address the converse of that statement: Does every slow growing form come from

the elliptic genus of a N = (2, 2) CFT?

Before we can make a precise statement, let us first discuss several qualifications. First

we note that due to (2.9), any unwrapping of an elliptic genus automatically gives

t

b
2 Z . (4.2)

Any conjecture we are making can thus only hold for wJf that satisfy (4.2).

Next, we note that slow growing wJf form a vector space, whereas CFTs do not. The

best we can hope for is thus that elliptic genera of minimal models may give a basis for the
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Responsible of lifting most states.
Breaks higher spin symmetry



Effects of single trace deformation

Deformation preserves supersymmetry and conformal symmetry. 

Further expectations of this operator: 

o to induce anomalous dimensions on most operators,

o reduce the Hagedorn growth.  

𝑆 → 𝑆 + 𝜆 𝑁 ∫ 𝑑(𝑧 Φ","(𝑧, ̅𝑧)

Turn on deformation Effects on 2pt function

Because � is exactly marginal, the deformed theory is again a CFT. Normalized correla-
tion functions in the deformed theory can be computed order by order by expanding the
exponential3

hOa(z)Ob(z
0)i� :=

⌦
Oa(z)Ob(z0)e�

R
d2w �(w)

↵
⌦
e�

R
d2w �(w)

↵

= hOa(z)Ob(z
0)i+ �

Z
d
2
w hOa(z)Ob(z

0)�(w)i

+
�
2

2

Z
d
2
w d

2
w

0
hOa(z)Ob(z

0)�(w)�(w0)i+O(�3) .

(2.2)

A typical question we ask is, how does the conformal weight h of an operator change
undert this deformation? To answer this, we note that the deformed theory is again a
CFT, so the normalized two-point functions are completely fixed by symmetry to be of
the form

hOa(z)Oa(z
0)i� =

1

(z � z0)2(h+µa(�))(z̄ � z̄0)2(h̄+µ̄a(�))
. (2.3)

Here (h, h̄) is the scaling dimension of the undeformed operator, and (µa(�), µ̄a(�)) is its
correction induced by the deformation. Note that the operators Oa are not necessarily
the same as the operators Oa, they have been rotated into a basis where the two-point
functions are diagonal. Locality then forces µa = µ̄a, so that in particular the spin remains
unchanged by the deformation. For the purpose of this work, we will only be interested
in lifting holomorphic operators (h̄ = 0).

To relate (2.3) to (2.2), we note that evaluating the integrals in the latter will lead to
an expression of the form

hOa(z)Ob(z
0)idef =

1

(z � z0)2h
�
�ab � 2�ab log |z � z

0
|
2 + . . .

�
. (2.4)

In this expression, �ab denotes a mixing matrix that captures the e↵ects of the deformation:
its eigenvalues give the anomalous dimensions µa, and its eigenbasis describes the operator
mixing that relates Oa to Oa. Therefore, one can determine the anomalous dimensions of
operators by computing the correction terms in (2.2) and extracting the coe�cient of the
logarithm.

We will be interested in the case when the CFT that we deform is a large-N symmetric
product orbifold of an N = 2 minimal model. These theories have many exactly marginal
operators [18]. We consider marginal operators coming from a single-trace 1/2-BPS oper-
ator in the twisted sector. More concretely, the marginal operators will be G descendants
of a single-trace (anti-)chiral primary in the twisted sector (see Appendix A for our con-
ventions and definition of the N = 2 algebra). The fact that the deformation operator

3In the following we suppress the anti-holomorphic coordinates when possible.

5



Anomalous dimension for spin-2
k c = 3k

k+2 n µ(2)

1 1
5

—
7

2 3
2

3 20⇡2�2(3N�2)
27(N�1)

4 187⇡2�2(3N�2)
256(N�1)

5 4⇡2�2(3N�2)
5(N�1)

3 9
5 3 44⇡2�2(9N�5)

243(N�1)

4 2

2 39⇡2�2(2N�1)
64(N�1)

3 19⇡2�2(2N�1)
27(N�1)

4 207⇡2�2(2N�1)
256(N�1)

5, 6, . . . 2 < c < 3 3 4⇡2�2(c2+12c�9)(cN�1)
27c2(c�1)(N�1)

6, 8, . . . 2 < c < 3 2 3⇡2�2(24+c)(cN�1)
64c(c�1)(N�1)

Table 3: The anomalous dimensions of the spin-2 current W2 of the symmetric

orbifolds of the N = 2 minimal models. When c = 1, theW2 current becomes null

and the anomalous dimension of the unnormalized current vanishes. Note that

for n = 3, the anomalous dimension is strictly greater than zero for all
3
2  c < 3.

In comparison with [17], we find that if we take c = 6, and N � 1, we obtain

µ(2)

��
n=2, c=6

=
9⇡2

�
2

32
+O(1/N) . (5.10)

This result agrees with [17] up to a factor of 1/2.12 Note that the same mismatch of
1/2 with respect to the results of [17] was found in [20] for the lifting of certain spin-1
currents.

We conclude this subsection by noting that the N = 2 multiplet for the spin-2 current
is denoted by W2 =

�
W2,W

+
5/2,W

�
5/2, w3

 
whose individual components are

W2 = T �
3

2
(JJ) +

3(cN � 1)

2c(N � 1)

X

j 6=l

J
(j)
J
(l)
,

W ±
5/2 = @G

±
� 3(JG±) +

3(cN � 1)

c(N � 1)

X

j 6=l

J
(j)
G

±(l)
, (5.11)

12
The deformation parameter used in [17] is related to the one used here by �there = N1/2�here.

30

symmetry, the conformal dimension of Y2 is protected on the conformal manifold. Nev-
ertheless, we will evaluate the appropriate correlation functions and integrals in (2.2) to
stress that it does not acquire an anomalous dimension.

The linear combination of (5.1) that leads to the non-trivial current at spin-two is

W2(z) = T (z)�
3

2
(JJ)(z) +

3(cN � 1)

2c(N � 1)

NX

i 6=j

J
(i)(z)J (j)(z) (5.3)

= T (z) +
3(c� 1)

2c(N � 1)
(JJ)(z)�

3(cN � 1)

2c(N � 1)

NX

i=1

(J (i)
J
(i))(z) . (5.4)

This operator is a Virasoro-Kac-Moody primary, and a primary under the full N = 2
algebra. As we will report, it is not protected under the marginal deformation. In
particular, note that the double-trace components of W2 are subleading in N such that
in the large-N limit, the spin-2 current consists only of single-trace operators, namely

W2(z) =
NX

i=1

⇥
T

(i)(z)�
3

2
(J (i)

J
(i))(z)

⇤
+O(1/N) . (5.5)

We will explicitly evaluate the anomalous dimensions of both (Y2,W2), although we
already expect justW2 to be lifted. First, we need to normalize the operators in accordance
to (2.3). Using (5.1), (5.2) and the Virasoro-Kac-Moody Ward identities, we find

⌦
Y2|Y2

↵
=

cN(cN � 1)

2
,

⌦
W2|W2

↵
=

N(c� 1)(cN � 1)

2(N � 1)
,

⌦
Y2|W2

↵
= 0 . (5.6)

It is interesting to note that the W2 field becomes null when c = 1, in which case it is
not part of the spectrum. For any other value of c, the normalized fields are given by an
overall re-scaling such that

Y2 !

s
2

cN(cN � 1)
Y2 , W2 !

s
2(N � 1)

N(c� 1)(cN � 1)
W2 . (5.7)

Using the normalization (5.7), and following the procedure outlined in Sec. 4, we find
that the anomalous dimensions of the spin-2 fields (Y2,W2) can be written as

�(2) =

✓
0 0
0 µ(2)

◆
. (5.8)

We observe that the anomalous dimension of Y2 vanishes exactly, as expected. In fact,
the only nonvanishing entry in (5.8) is the anomalous dimension of W2. This is consistent
with the fact that the conformal dimension of Y2 is protected on the conformal manifold.
The anomalous dimension µ(2) of W2 for the twisted moduli of the symmetric orbifold of
N = 2 minimal models are reported in Table 3. For this simple case it is worth remarking
that the dependence on N in µ(2) comes solely from the normalization (5.7).

27

o First correction in perturbation theory

o Sensitivity on the twist and central charge.

o Still, currents are lifting. Good sign!

Because � is exactly marginal, the deformed theory is again a CFT. Normalized correla-
tion functions in the deformed theory can be computed order by order by expanding the
exponential3

hOa(z)Ob(z
0)i� :=

⌦
Oa(z)Ob(z0)e�

R
d2w �(w)

↵
⌦
e�

R
d2w �(w)

↵

= hOa(z)Ob(z
0)i+ �

Z
d
2
w hOa(z)Ob(z

0)�(w)i

+
�
2

2

Z
d
2
w d

2
w

0
hOa(z)Ob(z

0)�(w)�(w0)i+O(�3) .

(2.2)

A typical question we ask is, how does the conformal weight h of an operator change
undert this deformation? To answer this, we note that the deformed theory is again a
CFT, so the normalized two-point functions are completely fixed by symmetry to be of
the form

hOa(z)Oa(z
0)i� =

1

(z � z0)2(h+µa(�))(z̄ � z̄0)2(h̄+µ̄a(�))
. (2.3)

Here (h, h̄) is the scaling dimension of the undeformed operator, and (µa(�), µ̄a(�)) is its
correction induced by the deformation. Note that the operators Oa are not necessarily
the same as the operators Oa, they have been rotated into a basis where the two-point
functions are diagonal. Locality then forces µa = µ̄a, so that in particular the spin remains
unchanged by the deformation. For the purpose of this work, we will only be interested
in lifting holomorphic operators (h̄ = 0).

To relate (2.3) to (2.2), we note that evaluating the integrals in the latter will lead to
an expression of the form

hOa(z)Ob(z
0)idef =

1

(z � z0)2h
�
�ab � 2�ab log |z � z

0
|
2 + . . .

�
. (2.4)

In this expression, �ab denotes a mixing matrix that captures the e↵ects of the deformation:
its eigenvalues give the anomalous dimensions µa, and its eigenbasis describes the operator
mixing that relates Oa to Oa. Therefore, one can determine the anomalous dimensions of
operators by computing the correction terms in (2.2) and extracting the coe�cient of the
logarithm.

We will be interested in the case when the CFT that we deform is a large-N symmetric
product orbifold of an N = 2 minimal model. These theories have many exactly marginal
operators [18]. We consider marginal operators coming from a single-trace 1/2-BPS oper-
ator in the twisted sector. More concretely, the marginal operators will be G descendants
of a single-trace (anti-)chiral primary in the twisted sector (see Appendix A for our con-
ventions and definition of the N = 2 algebra). The fact that the deformation operator

3In the following we suppress the anti-holomorphic coordinates when possible.
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Series k untwisted moduli twisted moduli single trace twisted

A2 1 1 28 1 twist 5, 1 twist 7

A3 2 3 26 1 twist 3, 1 twist 4, 1 twist 5

A5 4 9 24 1 twist 2, 1 twist 3, 1 twist 4

Ak+1 odd, � 3 P (k + 2)� 2 9 1 twist 3

Ak+1 even, � 6 P (k + 2)� 2 10 +

k

2+2P
r=1

P (r) 1 twist 2, 1 twist 3

D4 4 6 20 1 twist 2, 2 twist 3, 1 twist 4

D k

2+2 0 mod 4, � 8 P (k2 + 1) + P (k4 + 1) 8 +

k

4+1P
r=1

P (r) 1 twist 2, 1 twist 3

D k

2+2 2 mod 4, � 6 P (k2 + 1) 7 1 twist 3

E6 10 4 5 1 twist 2

E7 16 6 5 1 twist 2

E8 28 6 5 1 twist 2

Table 1: Number of moduli for symmetric orbifolds of the ADE minimal models.
We always take N large enough so that the moduli have converged. P (n) is the

integers partition function, i.e.
1P

n=0
P (n)qn =

1Q
n=1

1
(1�qn) .

4 The landscape of symmetric orbifold theories

4.1 A conjecture on the landscape

In the prior sections we established that the elliptic genus of any minimal model can be

unwrapped to give a weak Jacobi form of index t with maximal polar term q
0
y
b that is slow

growing, where t and b are related by

c =
6b2

t
. (4.1)

Let us now address the converse of that statement: Does every slow growing form come from

the elliptic genus of a N = (2, 2) CFT?

Before we can make a precise statement, let us first discuss several qualifications. First

we note that due to (2.9), any unwrapping of an elliptic genus automatically gives

t

b
2 Z . (4.2)

Any conjecture we are making can thus only hold for wJf that satisfy (4.2).

Next, we note that slow growing wJf form a vector space, whereas CFTs do not. The

best we can hope for is thus that elliptic genera of minimal models may give a basis for the

18

Type I: Examples

Multi-trace deformations. 
Explicit example of CFT with these BPS deformations.



Destroy Factorization
Consider any CFT that complies with Large-N and Factorization

𝜆 Φ(=,=)
? = 𝜆<

3@A

𝑂=3𝑂%
@𝑂?A

The coupling 𝜆 is independent of N. 
This deformation does not affect the large-N limit (observables converge).  

𝑂A𝑂B𝑂C D ∼ 𝜆

o Breaks large-N factorization
o Interactions that are not controlled by 𝐺%
o Type I theories have these deformations
o Argument is general: applies to CFTD



Outlook



Quantify the space of type I theories:
o Different from known examples 
o Systematic and tractable  
o Infinite family
o New possibilities in AdS/CFT

C
on

fo
rm

al
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ie
ld

 T
he

or
y 

Gravitational 
Theory 

Some requirements:
o Large-N
o Sparse spectrum
o Large gap spectrum 

Type I 𝑆𝑦𝑚% 𝐶
Conditions:
o Large-N
o Sparse elliptic genera
o Moduli



o Which CFTs capture classical (geometric) properties of gravity?

o What are possible theories of quantum gravity that can be 
designed?  

o What are the materials needed to assemble them?

Next steps:

o String theory and supergravity description.

o Heavy states: contrast black holes among type I, II and III.

o Effects of multi-trace deformation.

o Type I vs II: lifting of generic operators.

o Non-compact CFTs.



EXTRA



Re-cap

1 𝑐/3 6 Type IIIType I Type I, II, III

Strange and counter-intuitive. 
Moduli exists, but Hagedorn behavior persists. 

Type II:
Only criterion 1



c = 5 moduli check

Jildou Hollander

March 2022

1 Overview

Only giving the unique solutions, we have

Theory Sparse? Moduli? Composition
A6 ⌦A41 3 3 (11,88), (22,22)
A7 ⌦A23 3 3 (11,55),(22,22)
A8 ⌦A17 3 3 (11,44),(22,22)
A9 ⌦A14 3 3 (22,22)
A11 ⌦A11 3 3 (11,33),(33,11),(22,22)
A6 ⌦D22 7 7
A7 ⌦D13 7 3 (11,55)
A23 ⌦D5 7 3 (55,11)
A8 ⌦D10 7 7
A14 ⌦D6 7 7
A11 ⌦D7 3 3 (11,33),(33,11)
A8 ⌦ E7 7 7
A11 ⌦ E6 7 3 (33,11)
D5 ⌦D13 7 3 (11,55)
D7 ⌦D7 3 3 (11,33),(33,11)
D7 ⌦ E6 3 3 (33,11)
E6 ⌦ E6 7 7

A2 ⌦A5 ⌦A5 3 3 (11,11,22),(11,22,11)
A2 ⌦A5 ⌦D4 3 3 (11,22,11)
A2 ⌦D4 ⌦D4 7 7
A3 ⌦A3 ⌦A5 3 3 (11,11,22)
A3 ⌦A3 ⌦D4 7 7

1

Examples of theories where the seed has 𝑐/ = 5

Type I

Type II

Why are type II theories scary?



Comparisson

Type I:
Both criteria

Type II:
Only criterion 1

Needles in a haystack. 
Comply with necessary conditions to lead to a 
holographic CFT.

Strange and counter-intuitive. 
Moduli exists, but Hagedorn behavior persists. 

o We evaluated anomalous dimension of several holomorphic operators (currents).

o Type I and II theories exhibit no difference at leading order in perturbation theory. 😖

o What is the key feature that guarantees a supergravity point in moduli space? 


