## Strings in $\mathrm{AdS}_{3}$ and Black Hole microstates

Nicolas Kovensky

IPhT-CEA-Paris, Saclay, France.

Precision Holography Workshop - CERN, 5-9 June 2023.

Based on ArXiv:
2208.00978 SciPost, 2105.02255, 2210.15313, 2212.05877, 2304.08361 JHEP, 2203.13828 PRL, in collaboration with Davide Bufalini, Sergio Iguri, Julián Toro and David Turton.

Introduction and motivations

## Fuzzball paradigm


$e^{S_{\mathrm{BH}}}$ microstates, some are smooth \& horizonless geometries which have structure at the horizon scale.

Dynamics of light probes for
Microscopics? Evarporation?
Singularity? Observables?
Usual tools for this:

- Supergravity (wave eqs.)
- AdS/CFT (protected corrs)

But many microstates and observables are non-susy and/or highly curved!

We need an alternative description of string propagation!

- Some BH and $\mathrm{BH} \mu$ admit solvable worldsheet theories:
We can study them exactly!
- The main tools come from string propagation in $\mathrm{AdS}_{3}$.


## JMaRT microstates: generalities

We consider the JMaRT family of solutions. Pros / Cons:

- Microstates of asymptotically flat BHs in 5D. (in the grand canonical sense)
- Three-charge systems D1-D5-P / NS5-F1-P.
- IR $\mathrm{AdS}_{3}$ region potentially understood from holography.
- Generically non-supersymmetric.
- Include BPS and 2-charge systems as limits: supertubes [GLMT 12]


## JMaRT microstates: generalities

We consider the JMaRT family of solutions. Pros / Cons:

- Microstates of asymptotically flat BHs in 5D. (in the grand canonical sense)
- Three-charge systems D1-D5-P / NS5-F1-P.
- IR $\mathrm{AdS}_{3}$ region potentially understood from holography.
- Generically non-supersymmetric.
- Include BPS and 2-charge systems as limits: supertubes [GLMT 12]
- These are not very typical microstates. (closer to BH for $\mathrm{k} \gg 1$ )
- AF solutions have ergoregion instabilities.
[Cardoso et al 05]


## Exact worldshet models for black hole microstates

[MMT 17-20] showed that they admit an exact (null) coset description

$$
\frac{\mathrm{SL}(2, \mathbb{R}) \times \mathrm{SU}(2) \times \mathbb{R}_{t} \times \mathrm{U}(1)_{y}}{\mathbb{R} \times \mathrm{U}(1)} \times T^{4}
$$

$\Rightarrow$ we can compute their correlators and compare with the BH itself!

## Exact worldshet models for black hole microstates

[MMT 17-20] showed that they admit an exact (null) coset description

$$
\frac{\mathrm{SL}(2, \mathbb{R}) \times \mathrm{SU}(2) \times \mathbb{R}_{t} \times \mathrm{U}(1)_{y}}{\mathbb{R} \times \mathrm{U}(1)} \times T^{4}
$$

$\Rightarrow$ we can compute their correlators and compare with the BH itself!
In this talk I will...

1. Describe the main building blocks of these WS models.
2. Present new results for the $\operatorname{SL}(2, \mathbb{R})$ WZW model.
3. Discuss the applications to the $\mathrm{BH} \mu$ coset models.
4. Obtain many exact HL...LH correlators in these microstates.

A proof for spectrally flowed
3pt-functions in $\mathrm{AdS}_{3}$

## String Spectrum for bosonic $\mathrm{AdS}_{3}$

For pure NSNS fluxes, the worldsheet theory is the $\mathrm{SL}(2, \mathbb{R})-\mathrm{WZW}$ model:


- Continuum of long string scattering states with $j=\frac{1}{2}+i \mathbb{R}, m \in \mathbb{R}\left(\sim H_{3}^{+}\right)$
- Discrete set of short string bound states
$\frac{1}{2}<j<\frac{k-1}{2}, m= \pm(j+n)(\sim S U(2))$
- Key aspect: spectral flow $\omega \sim$ winding



## String Spectrum for bosonic $\mathrm{AdS}_{3}$

For pure NSNS fluxes, the worldsheet theory is the $\mathrm{SL}(2, \mathbb{R})-\mathrm{WZW}$ model:


- Continuum of long string scattering states with $j=\frac{1}{2}+i \mathbb{R}, m \in \mathbb{R}\left(\sim H_{3}^{+}\right)$
- Discrete set of short string bound states $\frac{1}{2}<j<\frac{k-1}{2}, m= \pm(j+n)(\sim S U(2))$
- Key aspect: spectral flow $\omega \sim$ winding


The unflowed sector in the $x$-basis $\rightarrow V_{j}(x ; z)$
Zero-mode currents $\sim$ differential operators in the boundary coord,

$$
J_{0}^{+} \sim \partial_{x} \quad J_{0}^{3} \sim x \partial_{x}+j \quad J_{0}^{-} \sim x^{2} \partial_{x}+2 j x
$$

and structure constants $C\left(j_{1}, j_{2}, j_{3}\right)$ for $\omega=0$ primaries are obtained by analytic continuation in $j(=h)$ from the $H_{3}^{+}$-model (Liouville).

## Spectral flow and string correlators for bosonic $\mathrm{AdS}_{3}$

$$
\begin{aligned}
& \text { Long standing ? } \\
& \left\langle\prod_{i} V_{j i h_{i}}^{\omega_{i}}\left(x_{j}, z_{i}\right)\right\rangle
\end{aligned}
$$

- $\omega$ is the spectral flow charge
- $j$ is the unflowed spin, fixing $\Delta$
- $h$ is the holographic spacetime weight ( $\neq j$ for $\omega>0$ )


## Spectral flow and string correlators for bosonic $\mathrm{AdS}_{3}$

Long standing ?


- $\omega$ is the spectral flow charge
- $j$ is the unflowed spin, fixing $\Delta$
- $h$ is the holographic spacetime weight ( $\neq j$ for $\omega>0$ )

These operators are highly non-canonical from the worldsheet CFT point of view: they are Virasoro primaries but not affine primaries,

$$
J^{+}(w) V_{j h}^{\omega}(x, z) \sim \frac{c^{+} V_{j, h+1}^{\omega}(x, z)}{(w-z)}+\sum_{n=2}^{\omega} \frac{\left(J_{n-1}^{+} V_{j h}^{\omega}\right)(x, z)}{(w-z)^{n}}+\frac{\partial_{x} V_{j h}^{\omega}(x, z)}{(w-z)}
$$

where we have many unknowns,

## Spectral flow and string correlators for bosonic $\mathrm{AdS}_{3}$

Long standing ? $\quad-\omega$ is the spectral flow charge

$-j$ is the unflowed spin, fixing $\Delta$

- $h$ is the holographic spacetime weight $(\neq j$ for $\omega>0)$

These operators are highly non-canonical from the worldsheet CFT point of view: they are Virasoro primaries but not affine primaries,

$$
J^{+}(w) V_{j h}^{\omega}(x, z) \sim \frac{c^{+} V_{j, h+1}^{\omega}(x, z)}{(w-z)}+\sum_{n=2}^{\omega} \frac{\left(J_{n-1}^{+} V_{j h}^{\omega}\right)(x, z)}{(w-z)^{n}}+\frac{\partial_{x} V_{j h}^{\omega}(x, z)}{(w-z)}
$$

where we have many unknowns, but also many constraints:

$$
J^{-}(x, w) V_{j h}^{\omega}(x, z)=(w-z)^{\omega-1} c^{-} V_{j, h-1}^{\omega}(x, z)+\ldots
$$

which leads to complicated recursion relations in $h_{i}$.

By defining a (somewhat odd) new variable y such that

$$
V_{j}(x, z)=\sum_{m} x^{m-j} V_{j m}(z) \Rightarrow V_{j}^{\omega}(x, y, z) \equiv \sum_{h} y^{h-\frac{k \omega}{2}-j} V_{j h}^{\omega}(x, z)
$$

one recasts the recursions relations as differential equations

$$
J_{\omega}^{+} \sim \partial_{y} \quad J_{0}^{3}-\frac{k \omega}{2} \sim y \partial_{y}+j \quad J_{-\omega}^{-} \sim y^{2} \partial_{y}+2 j y
$$

## The $y$-basis for Flowed operators

By defining a (somewhat odd) new variable y such that

$$
V_{j}(x, z)=\sum_{m} x^{m-j} V_{j m}(z) \Rightarrow V_{j}^{\omega}(x, y, z) \equiv \sum_{h} y^{h-\frac{\hbar \omega}{2}-j} V_{j h}^{\omega}(x, z)
$$

one recasts the recursions relations as differential equations

$$
J_{\omega}^{+} \sim \partial_{y} \quad J_{0}^{3}-\frac{k \omega}{2} \sim y \partial_{y}+j \quad J_{-\omega}^{-} \sim y^{2} \partial_{y}+2 j y
$$

## Geometric interpretation of for $y$

[guri-NK 22]
Diagonal $J_{0}^{3}+$ parafermions $\Rightarrow V_{j m}^{\omega}(z)=\Psi_{j m}(z) e^{\left(m+\frac{k}{2} \omega\right) \sqrt{\frac{2}{k}} \phi(z)}$ which leads to the generalization of the Maldacena-Ooguri formula

$$
V_{j}^{\omega}(x, y, z) \equiv \lim _{\varepsilon, \bar{\varepsilon} \rightarrow 0}|\varepsilon|^{2 j \omega} V_{j}\left(x+y \varepsilon^{\omega}, z+\varepsilon\right) V_{\frac{k}{2}, \frac{k}{2} \omega}^{\omega-1}(x, z)
$$

- $V_{\frac{k}{2}, \frac{k}{2} \omega}^{\omega-1} \sim \mathbb{1}_{\mathrm{st}}^{\omega}$ are the WS version of the HCFT twist operators $\sigma^{w}$
- the variable $y$ implements spacetime point-splitting,
- it is related to holomorphic covering maps [Lunin-Mathur 00]


## Covering maps and odd parity correlators

The fusion rules imply that for $\omega_{i}>1$ we often have a covering map

$$
\omega_{1}+\omega_{2}+\omega_{3} \in 2 \mathbb{Z}+1 \Rightarrow \exists!\quad \Gamma\left(z \sim z_{i}\right) \approx x_{i}+a_{i}[\omega]\left(z-z_{i}\right)^{\omega_{i}} \quad \forall i
$$

Inserting $J^{-}(\Gamma(z), z)$ avoids the unknowns,

## Covering maps and odd parity correlators

The fusion rules imply that for $\omega_{i}>1$ we often have a covering map

$$
\omega_{1}+\omega_{2}+\omega_{3} \in 2 \mathbb{Z}+1 \Rightarrow \exists!\quad \Gamma\left(z \sim z_{i}\right) \approx x_{i}+a_{i}[\omega]\left(z-z_{i}\right)^{\omega_{i}} \quad \forall i
$$

Inserting $J^{-}(\Gamma(z), z)$ avoids the unknowns, leading to the $y$-dependence
$\left\langle\prod_{i=1}^{3} V_{j_{i}}^{\omega_{i}}\left(y_{i}\right)\right\rangle \propto \prod_{i=1}^{3}\left(y_{i}-a_{i}\right)^{-2 j_{i}}\left(\omega_{1} \frac{y_{1}+a_{1}}{y_{1}-a_{1}}+\omega_{2} \frac{y_{2}+a_{2}}{y_{2}-a_{2}}+\omega_{3} \frac{y_{3}+a_{3}}{y_{3}-a_{3}}-1\right)^{\tilde{j}}$
with $\tilde{\jmath}=\frac{k}{2}-j_{1}-j_{2}-j_{3}$, and where $a_{i}$ are simple numerical coefficients.

## Covering maps and odd parity correlators

The fusion rules imply that for $\omega_{i}>1$ we often have a covering map

$$
\omega_{1}+\omega_{2}+\omega_{3} \in 2 \mathbb{Z}+1 \Rightarrow \exists!\quad \Gamma\left(z \sim z_{i}\right) \approx x_{i}+a_{i}[\omega]\left(z-z_{i}\right)^{\omega_{i}} \quad \forall i
$$

Inserting $J^{-}(\Gamma(z), z)$ avoids the unknowns, leading to the $y$-dependence
$\left\langle\prod_{i=1}^{3} V_{j_{i}}^{\omega_{i}}\left(y_{i}\right)\right\rangle \propto \prod_{i=1}^{3}\left(y_{i}-a_{i}\right)^{-2 j_{i}}\left(\omega_{1} \frac{y_{1}+a_{1}}{y_{1}-a_{1}}+\omega_{2} \frac{y_{2}+a_{2}}{y_{2}-a_{2}}+\omega_{3} \frac{y_{3}+a_{3}}{y_{3}-a_{3}}-1\right)^{\tilde{j}}$
with $\tilde{\jmath}=\frac{k}{2}-j_{1}-j_{2}-j_{3}$, and where $a_{i}$ are simple numerical coefficients.

## Some comments

- $h$-dependence is given in terms of Lauricella hypergeometrics.
- the $y$-basis diff eqs are null state conditions for twist ops
- singularities occur when $y_{i} \rightarrow a_{i}$ (geometric picture)
- this leaves the overall $C\left(j_{i}, \omega_{i}\right)$ factor unfixed
- and does not work for the even cases: there is no such map!


## Even correlators and the conjecture's proof

We can connect even and odd parity using $\operatorname{SL}(2, \mathbb{R})$ series identifications:


The isomorphisms $\hat{\mathcal{D}}_{j}^{ \pm, \omega}=\hat{\mathcal{D}}_{k / 2-j}^{\mp, \omega \pm 1}$ read

$$
\left.y^{2 j} V_{j}^{\omega}(x, y, z)\right|_{y \rightarrow \infty}=\mathcal{N}(j) V_{\frac{k}{2}-j}^{\omega-1}(x, 0, z)
$$

which allows us to fix all coefficients in the most general diff eqs from the near-by odd correlators obtained above.

## Even correlators and the conjecture's proof

We can connect even and odd parity using $\operatorname{SL}(2, \mathbb{R})$ series identifications:


$$
\begin{aligned}
\left\langle V_{j_{1}}^{\omega_{1}}\left(y_{1}\right) V_{j_{2}}^{\omega_{2}}\left(y_{2}\right) V_{j_{3}}^{\omega_{3}}\left(y_{3}\right)\right\rangle & \propto\left(1-\frac{y_{2}}{a_{2}\left[\Gamma_{3}^{+}\right]}-\frac{y_{3}}{a_{3}\left[\Gamma_{2}^{+}\right]}+\frac{y_{2} y_{3}}{a_{2}\left[\Gamma_{3}^{-}\right] a_{3}\left[\Gamma_{2}^{+}\right]}\right)^{j_{1}-j_{2}-j_{3}} \\
& \times\left(1-\frac{y_{1}}{a_{1}\left[\Gamma_{3}^{+}\right]}-\frac{y_{3}}{a_{3}\left[\Gamma_{1}^{+}\right]}+\frac{y_{1} y_{3}}{a_{1}\left[\Gamma_{3}^{-}\right] a_{3}\left[\Gamma_{1}^{+}\right]}\right)^{j_{2}-j_{3}-j_{1}} \\
& \times\left(1-\frac{y_{1}}{a_{1}\left[\Gamma_{2}^{+}\right]}-\frac{y_{2}}{a_{2}\left[\Gamma_{1}^{+}\right]}+\frac{y_{1} y_{2}}{a_{1}\left[\Gamma_{2}^{+}\right] a_{2}\left[\Gamma_{1}^{-}\right]}\right)^{j_{3}-j_{1}-j_{2}}
\end{aligned}
$$

The exact $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ chiral ring

## Matching the full the chiral ring

A first non-trivial test
$\frac{1}{2}$-BPS sector protected $\Rightarrow$ can compare $\neq$ points in moduli space

## 3 technical problems:



- Extend the $y$-basis to the $\operatorname{SU}(2)$ and fermionic sectors
- Compute descendant correlators
appearing from picture changing
- Fix conjectured normalizations

A first non-trivial test
$\frac{1}{2}$-BPS sector protected $\Rightarrow$ can compare $\neq$ points in moduli space

## 3 technical problems:

| Short String <br> correlators <br> AdS $_{3} \times S^{3} \times \mathrm{T}^{4}$ |
| :---: |
| $\left\langle V_{j_{1} h_{1}}^{\omega_{1}} V_{j_{2} h_{2}}^{\omega_{2}}\left(j^{\omega_{3}} V_{j_{3} h_{3}}^{\omega_{3}}\right)\right\rangle=?$ | | Chiral ring of <br> the Th <br> Sym Orbifold |
| :---: |

- Extend the $y$-basis to the $\operatorname{SU}(2)$ and fermionic sectors
- Compute descendant correlators
appearing from picture changing
- Fix conjectured normalizations

Other important directions:
[Dei-Eberhardt 21,22][Eberhardt 21]

- Similar (more involved) conjecture for 4pt-functions, to be proven.
- Recent proposal for a deformation of a symmetric orbifold of Liouville th.
- Matching obtained for residues of 3 and 4 pt functions

The SUSY worldsheet theory sourced by $n_{5}$ five-branes and $n_{1}$ strings is $\mathrm{AdS}_{3} \times S^{3} \times T^{4} \Rightarrow \mathrm{SL}(2, \mathbb{R})_{n_{5}+2} \times \mathrm{SU}(2)_{n_{5}-2} \times U(1)^{4}+$ free fermions Spacetime CP operators are built from highest-weight short string states. Using $y$-basis techniques we get $\left\langle V_{j_{1}}^{\omega_{1}} V_{j_{2}}^{\omega_{2}}\left(j^{\omega_{3}} V_{j_{3}}^{\omega_{3}}\right)\right\rangle=\alpha_{\omega}\left\langle V_{j_{1}}^{\omega_{1}} V_{j_{2}}^{\omega_{2}} V_{j_{3}}^{\omega_{3}}\right\rangle$

$$
\alpha_{\boldsymbol{\omega}} \equiv\left\{\begin{array}{l}
\frac{2 a_{3}\left[\Gamma_{13}^{++}\right]\left[\left(\omega_{1}-\omega_{2}\right)\left(j_{1}-j_{2}\right)+\left(\omega_{3}+1\right)\left(\frac{k}{2}-j_{3}\right)\right]}{\omega_{1}+\omega_{3}-\omega_{2}+1} \\
\frac{2 a_{3}\left[\Gamma_{3}^{+}\right]\left[\left(1+\omega_{1}+\omega_{2}\right) j_{3}-\left(1+\omega_{3}\right)\left(j_{1}+j_{2}\right)-\frac{k}{2}\left(\omega_{1}+\omega_{2}-\omega_{3}\right)\right]}{\omega_{3}-\omega_{2}-\omega_{1}}
\end{array}\right.
$$

Finally, we extend the method for flowed correlators to

$$
\text { Fermions : }(k, j) \rightarrow(-2,-1), \quad \mathrm{SU}(2):(k, j) \rightarrow\left(-k^{\prime},-l^{\prime}\right)
$$

Most $\boldsymbol{\omega}$-dependent factors cancel in the relevant products of $\operatorname{SL}(2, \mathbb{R}), \mathbf{S U}(2)$ and fermion correlators, giving the orbifold results

$$
\left\langle\mathbb{V}_{j_{1}}^{\omega_{1}} \mathbb{V}_{j_{3}}^{\omega_{2}} \mathbb{V}_{j_{3}}^{\omega_{3},(0)}\right\rangle=\frac{1}{\sqrt{N}}\left[\frac{\left(h_{1}+h_{2}+h_{3}-2\right)^{4}}{\left(2 h_{1}-1\right)\left(2 h_{2}-1\right)\left(2 h_{3}-1\right)}\right]^{1 / 2}
$$

# Black hole microstates from the worldsheet 

## JMaRT: fields, regimes and dualities

- Quantized charges $n_{1}, n_{5}, n_{p}$,
- Radius $R_{y}$, and integers $s, \bar{s}$ (angular momenta) and k (orbifold structure).
- NS5-decoupling limit: $g_{s} \rightarrow 0$ with $r / g_{s}$ fixed.
Dual to LST. [Aharony et al 04+]
- $\mathrm{AdS}_{3} / \mathrm{CFT}_{2}$ limit: $R_{y} \rightarrow \infty$ with $t / R_{y}$ and $y / R_{y}$ fixed.
- Dual CFT: heavy states with fractional spectral flow.


## An exact worldsheet description

The relevant worldsheet CFTs are gauged WZW models with target space

$$
\frac{\mathrm{SL}(2, \mathbb{R}) \times \mathrm{SU}(2) \times \mathbb{R}_{t} \times \mathrm{U}(1)_{y}}{\mathbb{R} \times \mathrm{U}(1)} \times T^{4}
$$

where we gauge the null and chiral currents $\quad 10+2 \mathrm{D} \rightarrow 9+1 \mathrm{D}$ $J=J^{3}+(2 s+1) K^{3}+i \mu \partial_{t}+i k_{+} \partial_{y}, \quad \bar{J}=\vec{J}^{3}+(2 \bar{s}+1) \bar{K}^{3}+i \mu \partial_{t}+i k_{-} \bar{\partial}_{y}$, with

$$
n_{5}\left(1-s_{ \pm}^{2}\right)+\mu^{2}-k_{ \pm}^{2}=0, \quad k_{ \pm}=\mp \mathrm{k} R_{y}+\mathrm{p} / R_{y} .
$$

## An exact worldsheet description

The relevant worldsheet CFTs are gauged WZW models with target space

$$
\frac{\mathrm{SL}(2, \mathbb{R}) \times \mathrm{SU}(2) \times \mathbb{R}_{t} \times \mathrm{U}(1)_{y}}{\mathbb{R} \times \mathrm{U}(1)} \times T^{4}
$$

where we gauge the null and chiral currents $\quad 10+2 \mathrm{D} \rightarrow 9+1 \mathrm{D}$
$J=J^{3}+(2 s+1) K^{3}+i \mu \partial_{t}+i k_{+} \partial_{y}, \quad \bar{J}=\bar{J}^{3}+(2 \bar{s}+1) \bar{K}^{3}+i \mu \partial_{t}+i k_{-} \bar{\partial}_{y}$,
with

$$
n_{5}\left(1-s_{ \pm}^{2}\right)+\mu^{2}-k_{ \pm}^{2}=0, \quad k_{ \pm}=\mp \mathrm{k} R_{y}+\mathrm{p} / R_{y} .
$$

Our results from [BIKT 21]:

1. All such consistent models give all JMaRT backgrounds.
2. CTC, Regularity and horizonless $\leftrightarrow$ consistent WS spectrum.

## An aside on $T \bar{T}$ deformations of the HCFT

Upon gauge fixing, this generates the WS marginal deformation

$$
L_{\mathrm{WZW}} \rightarrow L_{\mathrm{gWZW}}=L_{\mathrm{WZW}}+\frac{1}{\sum(r, \theta)} J \bar{J}
$$

- The zeros of $\Sigma$ are the (possibly smeared) locations of sources.


## An aside on $T \bar{T}$ deformations of the HCFT

Upon gauge fixing, this generates the WS marginal deformation

$$
L_{\mathrm{WZW}} \rightarrow L_{\mathrm{gWZW}}=L_{\mathrm{WZW}}+\frac{1}{\sum(r, \theta)} J \bar{J}
$$

- The zeros of $\Sigma$ are the (possibly smeared) locations of sources.

This is a slighly more complicated version of [Kutasov et al 17+], which

- adds back the " $1+$ " in the harmonic $H_{1}(r)$ function,
- modifies the UV to include the linear dilaton region,
- is dual to a $T \bar{T}$-type deformation of the $\operatorname{HCFT}\left(\lambda \sim 1 / R_{y}\right)$.


## Null-gauged WZW models

For chiral null gaugings all anomalies cancel

$$
S_{\mathrm{gWZW}}[\mathrm{~g}, \mathcal{A}, \overline{\mathcal{A}}]=S_{\mathrm{WZW}}[\tilde{g}]+\text { ghosts }
$$

## Null-gauged WZW models

For chiral null gaugings all anomalies cancel

$$
S_{\mathrm{gWZW}}[g, \mathcal{A}, \overline{\mathcal{A}}]=S_{\mathrm{WZW}}[\tilde{g}]+\text { ghosts }
$$

Physical states of the coset model correspond to vertex operators of the upstairs theory that are BRST-closed under

$$
\mathcal{Q}_{\mathrm{BRST}}=\oint d z:\left[c\left(T+T_{\beta \gamma \tilde{\beta} \tilde{\gamma}}\right)+\gamma G+\tilde{c} J+\tilde{\gamma} \boldsymbol{\lambda}+\text { ghosts }\right]:,
$$

where the last terms implement bosonic and fermionic gauge invariance.

## Null-gauged WZW models

For chiral null gaugings all anomalies cancel

$$
S_{\mathrm{gWZW}}[\mathrm{~g}, \mathcal{A}, \overline{\mathcal{A}}]=S_{\mathrm{WZW}}[\tilde{g}]+\text { ghosts }
$$

Physical states of the coset model correspond to vertex operators of the upstairs theory that are BRST-closed under

$$
\mathcal{Q}_{\mathrm{BRST}}=\oint d z:\left[c\left(T+T_{\beta \gamma \tilde{\beta} \tilde{\gamma}}\right)+\gamma G+\tilde{c} J+\tilde{\gamma} \boldsymbol{\lambda}+\text { ghosts }\right]:,
$$

where the last terms implement bosonic and fermionic gauge invariance.

We can construct vertex operators in the WS theory from $\mathrm{SL}(2, \mathbb{R})$ and $\mathrm{SU}(2) \mathrm{WZW}$ models. They will be dual to $\mathrm{AdS}_{3}$ light states in the IR, and LST operators in the full coset.

## Vertex operators in the coset models (NS sector)

They are excitations of the center-of-mass wave-function

$$
\Phi_{0}=V_{j m} V_{j^{\prime} m^{\prime}}^{\prime} e^{i\left(-E t+P_{y} y\right)}
$$

Virasoro and gauge constraints

$$
\frac{-j(j-1)+j^{\prime}\left(j^{\prime}+1\right)}{n_{5}}-\frac{1}{4}\left(E^{2}-P_{y}^{2}\right)=0=m+s_{+} m^{\prime}+\frac{1}{2}\left(\mu E+k_{+} P_{y}\right)
$$

However, $\mathrm{AdS}_{3} \times S^{3}$ isometries are broken since $\left[J^{ \pm}, \mathcal{Q}_{\mathrm{BRST}}\right] \neq 0$ $\Rightarrow$ physical states need not have definite spins $J$ and $J^{\prime}$.

## Vertex operators in the coset models (NS sector)

They are excitations of the center-of-mass wave-function

$$
\Phi_{0}=V_{j m} V_{j^{\prime} m^{\prime}}^{\prime} e^{i\left(-E t+P_{y} y\right)}
$$

Virasoro and gauge constraints

$$
\frac{-j(j-1)+j^{\prime}\left(j^{\prime}+1\right)}{n_{5}}-\frac{1}{4}\left(E^{2}-P_{y}^{2}\right)=0=m+s_{+} m^{\prime}+\frac{1}{2}\left(\mu E+k_{+} P_{y}\right)
$$

However, $\mathrm{AdS}_{3} \times S^{3}$ isometries are broken since $\left[J^{ \pm}, \mathcal{Q}_{\mathrm{BRST}}\right] \neq 0$ $\Rightarrow$ physical states need not have definite spins $J$ and $J^{\prime}$.

We find $\Phi_{\text {AdS }}=e^{-\varphi}\left(\psi_{\perp} V_{j}\right)_{j m} V_{j^{\prime} m^{\prime}}^{\prime} e^{i\left(-E t+P_{y} y\right)}$ with

$$
\psi_{\perp}^{3}=\psi^{3}+c^{t} \lambda^{t}+c^{y} \lambda^{y}, c^{t}=\frac{n_{5} P_{y}}{k_{+} E+\mu P_{y}}, c^{y}=-\frac{n_{5} E}{k_{+} E+\mu P_{y}} .
$$

- Modified $j \rightarrow j\left(E, P_{y}\right)$ obtained from the quadratic Virasoro.
- New terms $c^{t} \lambda^{t}, c^{y} \lambda^{y}$ needed for transversality in $t$ and $y$ dirs.
- Gauge invariance relates the different quantum numbers.

Heavy-Light correlators at all orders in $\alpha^{\prime}$

## Worldsheet correlation functions

Each heavy background defines a coset model:

$$
\langle\mu \mathrm{BH}| O_{1} \ldots O_{n}|\mu \mathrm{BH}\rangle \leftrightarrow\left\langle\Phi_{1} \ldots \Phi_{n}\right\rangle_{\text {WS vacuum }}
$$

- encode the dynamics of light probes in the BH microstates,
- define Heavy-Light LST correlators (in progress)
- Characterize the flow of these objects under the marginal deformation of the WS theory (st $T \bar{T}$-HCFT)


## Worldsheet correlation functions

Each heavy background defines a coset model:

$$
\langle\mu \mathrm{BH}| O_{1} \ldots O_{n}|\mu \mathrm{BH}\rangle \leftrightarrow\left\langle\Phi_{1} \ldots \Phi_{n}\right\rangle_{\text {WS vacuum }}
$$

- encode the dynamics of light probes in the BH microstates,
- define Heavy-Light LST correlators (in progress)
- Characterize the flow of these objects under the marginal deformation of the WS theory (st $T \bar{T}$-HCFT)

In the IR, these become HL correlators in the dual $\mathrm{CFT}_{2}$.
From now on I focus on their explicit computation.

## Coset states in the IR

A modified version of the $\mathrm{AdS}_{3} \times S^{3}$ symmetries emerges in the IR:

$$
R_{y} \rightarrow \infty \text { with } \mathcal{E}=E R_{y} \text { and } n_{y}=P_{y} R_{y} \in \mathbb{Z} \text { held fixed }
$$

we have

1. Virasoro has $\frac{1}{4}\left(E^{2}-P_{y}^{2}\right) \sim R_{y}^{-2} \rightarrow 0 \Rightarrow j=j^{\prime}+1$ as usual.
2. The coefficients of the extra terms $c_{t, y}$ are $\sim R_{y}^{-1} \rightarrow 0$.

Hence, $m$-basis correlators look very similar to those of $\operatorname{AdS}_{3} \times S^{3} \times T^{4}$.

## Coset states in the IR

A modified version of the $\mathrm{AdS}_{3} \times S^{3}$ symmetries emerges in the IR:

$$
R_{y} \rightarrow \infty \text { with } \mathcal{E}=E R_{y} \text { and } n_{y}=P_{y} R_{y} \in \mathbb{Z} \text { held fixed }
$$

we have

1. Virasoro has $\frac{1}{4}\left(E^{2}-P_{y}^{2}\right) \sim R_{y}^{-2} \rightarrow 0 \Rightarrow j=j^{\prime}+1$ as usual.
2. The coefficients of the extra terms $c_{t, y}$ are $\sim R_{y}^{-1} \rightarrow 0$.

Hence, $m$-basis correlators look very similar to those of $\mathrm{AdS}_{3} \times S^{3} \times T^{4}$.

But we know that even in the simplest case, the HLLH correlator with $O_{L}$ the $h=1 / 2$ untwisted CP and $|H\rangle$ a SUSY background ( $\bar{s}=0$ ), it should be quite non-trivial!
$\left\langle O_{\frac{1}{2}}(1) \bar{O}_{\frac{1}{2}}(x)\right\rangle_{s, k}=\frac{x^{(\hat{s}-s) / k}}{|x||1-x|^{2}} \frac{1-|x|^{2(1-\hat{s} / \mathrm{k})}+\bar{x}\left(|x|^{-2 \hat{s} / k}-1\right)}{1-|x|^{2 / k}}$
where $\hat{s}=s \bmod k$, computed from SUGRA. How can this be?

## Physical operators in the new $x$-basis

It's all hidden in the coset $x$-basis. Gauge constraints do not trivialize!
define the spacetime modes

$$
m_{y}=\frac{\mathcal{E}+n_{y}}{2}, \bar{m}_{y}=\frac{\mathcal{E}-n_{y}}{2}
$$

$$
0=m+s_{+} m^{\prime}-\mathrm{k} m_{y}
$$

where " $x$ " is the physical boundary coordinate, " $u$ " is the auxiliary upstairs one, and $\beta=h(1-\mathrm{k})+s_{+} m^{\prime}$ is an extra shift.

## Physical operators in the new $x$-basis

It's all hidden in the coset $x$-basis. Gauge constraints do not trivialize!
define the spacetime modes

$$
m_{y}=\frac{\mathcal{E}+n_{y}}{2}, \bar{m}_{y}=\frac{\mathcal{E}-n_{y}}{2}
$$

$$
0=m+s_{+} m^{\prime}-\mathrm{k} m_{y}
$$

where " $x$ " is the physical boundary coordinate, " $u$ " is the auxiliary upstairs one, and $\beta=h(1-\mathrm{k})+s_{+} m^{\prime}$ is an extra shift.

For the above $\beta$, this becomes $u \partial_{u}=k x \partial_{x}$, solved by $u^{k}=x$.

$$
V_{j}(x)=\sum_{m=j+n} x^{m-j} V_{j m} \rightarrow O_{h}(x) \equiv \sum_{u^{k}=x} u^{\beta} \bar{u}^{\bar{\beta}} V_{h}(u) \mathcal{V}_{h^{\prime} m^{\prime} \bar{m}^{\prime}}^{\prime}
$$

## Physical operators in the new $x$-basis

It's all hidden in the coset $x$-basis. Gauge constraints do not trivialize!
define the spacetime modes

$$
0=m+s_{+} m^{\prime}-\mathrm{k} m_{y}
$$

$$
m_{y}=\frac{\mathcal{E}+n_{y}}{2}, \bar{m}_{y}=\frac{\mathcal{E}-n_{y}}{2}
$$

$$
I
$$

$$
m=u \partial_{u}+h-\beta \quad m_{y}=x \partial_{x}+h .
$$

where " $x$ " is the physical boundary coordinate, " $u$ " is the auxiliary upstairs one, and $\beta=h(1-\mathrm{k})+s_{+} m^{\prime}$ is an extra shift.

For the above $\beta$, this becomes $u \partial_{u}=k x \partial_{x}$, solved by $u^{k}=x$.

$$
V_{j}(x)=\sum_{m=j+n} x^{m-j} V_{j m} \rightarrow O_{h}(x) \equiv \sum_{u^{k}=x} u^{\beta} \bar{u}^{\bar{\beta}} \mathcal{V}_{h}(u) \mathcal{V}_{h^{\prime} m^{\prime} \bar{m}^{\prime}}^{\prime}
$$

The role of $\beta$ is two-fold:

1. it gives the Jacobian factor for the coordinate change from $x$ to $u$,
2. and also the appropriate rescaling under spectral flow (in $u$-space).
3. The modes $m_{y}$ are fractional, as expected from spacetime $k$-twist.

## HL correlators with arbitrary light insertions

Based on all this, we obtain a formula for all higher-point-function:

$$
\left\langle O_{1}\left(x_{1}\right) \ldots O_{n}\left(x_{n}\right)\right\rangle_{H}=\sum_{u_{i}^{k}=x_{i}}\left(\prod_{i=1}^{n} u_{i}^{\beta_{i}} \bar{u}_{i}^{\bar{\beta}_{i}}\right)\left\langle O_{1}\left(u_{1}\right) \ldots O_{n}\left(u_{n}\right)\right\rangle
$$

so that they are determined directly from their vacuum counterparts.

## HL correlators with arbitrary light insertions

Based on all this, we obtain a formula for all higher-point-function:

$$
\left\langle O_{1}\left(x_{1}\right) \ldots O_{n}\left(x_{n}\right)\right\rangle_{H}=\sum_{u_{i}^{k}=x_{i}}\left(\prod_{i=1}^{n} u_{i}^{\beta_{i}} \bar{u}_{i}^{\bar{\beta}_{i}}\right)\left\langle O_{1}\left(u_{1}\right) \ldots O_{n}\left(u_{n}\right)\right\rangle
$$

so that they are determined directly from their vacuum counterparts.

1. For $n=2,3$ light fields, these are closed formulas, exact in $\alpha^{\prime}$
2. Valid for any JMaRT background (BPS or not),
3. and any CP of weight $h_{i}$ and of any twist / spectral flow!
4. Reproduces [Galliani et al 16] for $n=2$ and $\bar{s}=0$,
5. They match all known orbifold results, including non-susy cases.
6. We used it to study the analogue of Hawking radiation.
7. As a further test, we have computed the first HLLLH correlator in a microstate background $\vec{h}_{L}=\left(\frac{1}{2}, \frac{1}{2}, 1\right)$ from both sides.

## Matching with the D1D5CFT: untwisted vs twisted sectors

For untwisted ops this parallels the symmetric orbifold [Lunin-Mathur 01]

$$
X_{(1)} \rightarrow X_{(2)} \rightarrow \cdots \rightarrow X_{(\mathrm{k})} \rightarrow X_{(1)}
$$

with fractional modes since JMaRT states $\in k$-twisted sector:

$$
O_{\frac{m}{k}}=\oint d x \sum_{r=1}^{k} O_{(r)}(x) e^{\frac{2 \pi i m}{k}(r-1)} x^{h+\frac{m}{k}-1} \Rightarrow O(x)=\sum_{r=1}^{k} O_{(r)}(x) \rightarrow \sum_{u^{k}=x} O(u)
$$

We constructed $S_{\mathrm{k}}$-invariant untwisted operators from the worldsheet.

## Matching with the D1D5CFT: untwisted vs twisted sectors

For untwisted ops this parallels the symmetric orbifold [Lunin-Mathur 01]

$$
X_{(1)} \rightarrow X_{(2)} \rightarrow \cdots \rightarrow X_{(\mathrm{k})} \rightarrow X_{(1)}
$$

with fractional modes since JMaRT states $\in k$-twisted sector:

$$
O_{\frac{m}{k}}=\oint d x \sum_{r=1}^{k} O_{(r)}(x) e^{\frac{2 \pi i m}{k}(r-1)} x^{h+\frac{m}{k}-1} \Rightarrow O(x)=\sum_{r=1}^{k} O_{(r)}(x) \rightarrow \sum_{u^{k}=x} O(u)
$$

We constructed $S_{\mathrm{k}}$-invariant untwisted operators from the worldsheet.
A twist-2 example

- Here using the map $u^{k}=x$ is surprising.
- Various structures contribute, at large $N\left\langle R_{\mathrm{k}} R_{\mathrm{k}} \mathrm{O}_{2} \mathrm{O}_{2}^{\dagger} R_{\mathrm{k}}^{\dagger} R_{\mathrm{k}}^{\dagger}\right\rangle$.
- The more complicated covering map is $x(u)=\left(\frac{u+1}{u-1}\right)^{2 k}$.
- One has to sum over pre-images.

Discussion and outlook

## Discussion and outlook

Still plenty to learn from the $\mathrm{AdS}_{3}$ WZW model and related cosets!

- Can we prove the conjecture for flowed 4 pt functions in $\mathrm{AdS}_{3}$ ? [Dei-Eberhardt 21]
- Is it possible to match correlation functions beyond their residues? [Dei-Eberhardt 22]
- Can we embed the old $H_{3}^{+} \leftrightarrow$ Liouville duality into the new proposal for the holographic CFT at $n_{5}>1$ ?
[Ribault-Teschner 05]


## Discussion and outlook

Still plenty to learn from the $\mathrm{AdS}_{3}$ WZW model and related cosets!

- Can we prove the conjecture for flowed 4 pt functions in $\mathrm{AdS}_{3}$ ? [Dei-Eberhardt 21]
- Is it possible to match correlation functions beyond their residues? [Dei-Eberhardt 22]
- Can we embed the old $H_{3}^{+} \leftrightarrow$ Liouville duality into the new proposal for the holographic CFT at $n_{5}>1$ ?
[Ribault-Teschner 05]
- Study more complicated processes such as the Penrose process? [Bianchi 19] What about the partition functions?
- How do these correlators flow to the UV? Locality in $x$ breaks down, as it should in LST.
[Giveon et al 17-23]
- Can we obtain WS models for the new NSNS superstrata? [Čeplak 22]

Thank you! Any questions?

