LABEX

Mathématique
Hadamard.

Precision Holography for M2 branes

Valentin Reys
IPhT CEA Paris-Saclay
Precision Holography at CERN | 06-06-2023

Based on

[arXiv:2304.01734] \& [arXiv:2210.09318] with

N. Bobev and J. Hong

Motivation

- AdS/CFT provides a gauge theory description of string or M-theory on asymptotically locally AdS backgrounds. Immediate consequence:

$$
Z_{\mathrm{CFT}}[\mathrm{~J}]=Z_{\text {string } / \mathrm{M}}[\phi]
$$

- Tested thoroughly in the large N limit.

Motivation

- AdS/CFT provides a gauge theory description of string or M-theory on asymptotically locally AdS backgrounds. Immediate consequence:

$$
Z_{\mathrm{CFT}}[\mathrm{~J}]=Z_{\text {string } / \mathrm{M}}[\phi]
$$

- Tested thoroughly in the large N limit.
- The correspondence is meant to be valid at finite N. Schematically,

$$
\log Z_{\mathrm{CFT}}=F_{0}(\lambda)+\frac{1}{N^{2}} F_{1}(\lambda)+\ldots
$$

- At strong coupling, CFT observables encode information about supergravity. Corrections teach us about string/M-theory beyond the low-energy limit.

Motivation

- AdS/CFT provides a gauge theory description of string or M-theory on asymptotically locally AdS backgrounds. Immediate consequence:

$$
Z_{\mathrm{CFT}}[\mathrm{~J}]=Z_{\text {string } / \mathrm{M}}[\phi]
$$

- Tested thoroughly in the large N limit.
- The correspondence is meant to be valid at finite N. Schematically,

$$
\log Z_{\mathrm{CFT}}=F_{0}(\lambda)+\frac{1}{N^{2}} F_{1}(\lambda)+\ldots
$$

- At strong coupling, CFT observables encode information about supergravity. Corrections teach us about string/M-theory beyond the low-energy limit.
- Studying and understanding corrections on both sides of the duality:

Precision Holography

Precision holography

- Need concrete realizations where we can test and make predictions \rightarrow use supersymmetry to gain computational mileage.

SCFT

Localization gives exact results Solving the matrix models yields $1 / N$ expansion to any order

Various techniques available Analytic \& numeric

Supergravity
Exact results out of reach*
Work order-by-order in the derivative expansion

Can also study one-loop effects
LO, NLO, NNLO tests
*except special low-d settings

Precision holography

- Need concrete realizations where we can test and make predictions \rightarrow use supersymmetry to gain computational mileage.

SCFT

Localization gives exact results Solving the matrix models yields $1 / N$ expansion to any order

Various techniques available Analytic \& numeric

Supergravity
Exact results out of reach*
Work order-by-order in the derivative expansion

Can also study one-loop effects
LO, NLO, NNLO tests
*except special low-d settings

- SCFT side under better control \rightarrow use it to make predictions.
- New handle on AdS vacua of string/M-theory with non-trivial fluxes.

Precision holography

- Need concrete realizations where we can test and make predictions \rightarrow use supersymmetry to gain computational mileage.

SCFT

Localization gives exact results Solving the matrix models yields $1 / N$ expansion to any order

Various techniques available Analytic \& numeric

Supergravity
Exact results out of reach*
Work order-by-order in the derivative expansion

Can also study one-loop effects
LO, NLO, NNLO tests
*except special low-d settings

- SCFT side under better control \rightarrow use it to make predictions.
- New handle on AdS vacua of string/M-theory with non-trivial fluxes.
- This talk: $\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ holography from M 2 branes.

$\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ from M 2 branes

- Study 3d $\mathcal{N} \geq 2$ SCFTs arising from low-energy limit of N M2 branes.
- No λ in M-theory \rightarrow compare numbers at each order in $1 / N$.

$\mathrm{AdS}_{4} / \mathrm{CFT}_{3}$ from M 2 branes

- Study 3d $\mathcal{N} \geq 2$ SCFTs arising from low-energy limit of N M2 branes.
- No λ in M -theory \rightarrow compare numbers at each order in $1 / N$.
- M-theory engineers many dual pairs:

3d Chern-Simons-matter theories §
M-theory on $\mathrm{AlAdS}_{4} \times X_{7}$

Take X_{7} to be Sasaki-Einstein \rightarrow CSm

$$
\begin{gathered}
X_{7}=S^{7} / \mathbb{Z}_{k}(\text { free }) \rightarrow \text { ABJM } \\
X_{7}=S^{7} / \mathbb{Z}_{r}(\text { f.p. }) \rightarrow \mathrm{ADHM} \\
X_{7}=N^{010}, V^{52}, Q^{111}, \ldots
\end{gathered}
$$

- Put the gauge theory on compact M_{3} and study susy partition functions. Use localization to compute them exactly for various $\left(X_{7}, M_{3}\right)$.

Sphere partition functions

The squashed sphere

- Put the SCFT on the squashed 3-sphere: $M_{3}=S_{b}^{3}$

$$
\omega_{1}^{2}\left(x_{1}^{2}+x_{2}^{2}\right)+\omega_{2}^{2}\left(x_{3}^{2}+x_{4}^{2}\right)=1 \quad \text { with } \quad b^{2}=\omega_{1} / \omega_{2}
$$

Preserves $U(1) \times U(1)$ isometry, symmetry $b \leftrightarrow 1 / b$

- Compute the partition fct exactly using localization.

The squashed sphere

- Put the SCFT on the squashed 3-sphere: $M_{3}=S_{b}^{3}$

$$
\omega_{1}^{2}\left(x_{1}^{2}+x_{2}^{2}\right)+\omega_{2}^{2}\left(x_{3}^{2}+x_{4}^{2}\right)=1 \quad \text { with } \quad b^{2}=\omega_{1} / \omega_{2}
$$

Preserves $\mathrm{U}(1) \times \mathrm{U}(1)$ isometry, symmetry $b \leftrightarrow 1 / b$

- Compute the partition fct exactly using localization.
- For ABJM corresponding to $X_{7}=S^{7} / \mathbb{Z}_{k}$

$$
\begin{aligned}
Z_{\mathrm{ABJM}}(b)=\frac{1}{(N!)^{2}} \int & d^{N} \mu d^{N} \nu e^{i \pi k} \sum_{i}\left(\nu_{i}^{2}-\mu_{i}^{2}\right) \\
& \prod_{i>j} 4 \sinh \left[\pi b\left(\mu_{i}-\mu_{j}\right)\right] \sinh \left[\pi b^{-1}\left(\mu_{i}-\mu_{j}\right)\right] \times(\mu \rightarrow \nu) \\
& \prod_{i, j} s_{b}\left[\frac{i Q}{4}-\mu_{j}+\nu_{i}\right]^{2} s_{b}\left[\frac{i Q}{4}+\mu_{j}-\nu_{i}\right]^{2}
\end{aligned}
$$

$Q=b+b^{-1}$ and s_{b} is the double sine function $s_{b}(x)=\prod_{m, n} \frac{m b+n b^{-1}+\frac{Q}{2}-i x}{m b+n b^{-1}+\frac{Q}{2}+i x}$

The Fermi gas

- For precision holography, need access to $1 / N$ corrections.
- Simplifications for some values of the parameters:

theory	parameters \mathcal{F}	susy	cf.
$X_{7}=S^{7} / \mathbb{Z}_{k}$	$b^{2}=1$ and $k \geq 1$	$\mathcal{N}=6$	[Mariño,Putrov'11]
$X_{7}=S^{7} / \mathbb{Z}_{r}$	$b^{2}=1$ and $r \geq 1$ $b^{2}=3$ and $N_{f} \geq 1$	$\mathcal{N}=4$	[Mezei,Pufu'13] [Hatsuda'16]
$X_{7}=N^{010} / \mathbb{Z}_{k}$	$b^{2}=1$ and $k \geq 1$	$\mathcal{N}=3$	[Mariño,Putrov'11]

- For these cases, reformulation in terms of free Fermi gas

$$
Z_{S_{b}^{3}}(\mathcal{F})=\frac{1}{N!} \sum_{\sigma \in S_{N}}(-1)^{\sigma} \int d^{N} x \prod_{i=1}^{N} \rho_{b}\left(x_{i}, x_{\sigma(i)}\right)
$$

The Fermi gas

- For precision holography, need access to $1 / N$ corrections.
- Simplifications for some values of the parameters:

theory	parameters \mathcal{F}	susy	cf.
$X_{7}=S^{7} / \mathbb{Z}_{k}$	$b^{2}=1$ and $k \geq 1$	$\mathcal{N}=6$	[Mariño,Putrov'11]
$X_{7}=S^{7} / \mathbb{Z}_{r}$	$b^{2}=1$ and $r \geq 1$ $b^{2}=3$ and $N_{f} \geq 1$	$\mathcal{N}=4$	[Mezei, Pufu'13] [Hatsuda'16]
$X_{7}=N^{010} / \mathbb{Z}_{k}$	$b^{2}=1$ and $k \geq 1$	$\mathcal{N}=3$	[Mariño,Putrov'11]

- For these cases, reformulation in terms of free Fermi gas

$$
Z_{S_{b}^{3}}(\mathcal{F})=\frac{1}{N!} \sum_{\sigma \in S_{N}}(-1)^{\sigma} \int d^{N} x \prod_{i=1}^{N} \rho_{b}\left(x_{i}, x_{\sigma(i)}\right)
$$

- Leads to an Airy function encoding all perturbative terms

$$
Z_{S_{b}^{3}}(\mathcal{F})=e^{A} C^{-\frac{1}{3}} \operatorname{Ai}\left[C^{-\frac{1}{3}}(N-B)\right]+\mathcal{O}\left(e^{-\sqrt{N}}\right)
$$

Dual supergravity

- Asymptotic expansion of the free energy at large N :

$$
-\log Z_{S_{b}^{3}}(\mathcal{F})=\frac{2}{3 \sqrt{C}} N^{\frac{3}{2}}-\frac{B}{\sqrt{C}} N^{\frac{1}{2}}+\frac{1}{4} \log N+\mathcal{O}\left(N^{0}\right)
$$

- Dual to 4 d minimal supergravity solutions $\left(g_{4}, A\right)$ with $\Lambda<0$ and $\partial \mathcal{M}=S_{b}^{3}$

Dual supergravity

- Asymptotic expansion of the free energy at large N :

$$
-\log Z_{S_{b}^{3}}(\mathcal{F})=\frac{2}{3 \sqrt{C}} N^{\frac{3}{2}}-\frac{B}{\sqrt{C}} N^{\frac{1}{2}}+\frac{1}{4} \log N+\mathcal{O}\left(N^{0}\right)
$$

- Dual to 4 d minimal supergravity solutions $\left(g_{4}, A\right)$ with $\Lambda<0$ and $\partial \mathcal{M}=S_{b}^{3}$
- LO $N^{\frac{3}{2}}$ term matches the two-derivative regularized on-shell actions.
[Emparan, Johnson, Myers'99; Martelli, Passias, Sparks'11]
- NLO $N^{\frac{1}{2}}$ term reproduced by including bulk four-derivative terms.
[Bobev, Charles, Hristov, VR'21]
- NNLO $\log N$ term is a one-loop effect from summing over the KK modes around the 11d backgrounds.
[Bhattacharyya, Grassi ,Mariño, Sen '12]

Dual supergravity

- Asymptotic expansion of the free energy at large N :

$$
-\log Z_{S_{b}^{3}}(\mathcal{F})=\frac{2}{3 \sqrt{C}} N^{\frac{3}{2}}-\frac{B}{\sqrt{C}} N^{\frac{1}{2}}+\frac{1}{4} \log N+\mathcal{O}\left(N^{0}\right)
$$

- Dual to 4 d minimal supergravity solutions $\left(g_{4}, A\right)$ with $\Lambda<0$ and $\partial \mathcal{M}=S_{b}^{3}$
- LO $N^{\frac{3}{2}}$ term matches the two-derivative regularized on-shell actions.
[Emparan, Johnson, Myers'99; Martelli, Passias, Sparks'11]
- NLO $N^{\frac{1}{2}}$ term reproduced by including bulk four-derivative terms.
[Bobev, Charles, Hristov, VR‘21]
- NNLO $\log N$ term is a one-loop effect from summing over the KK modes around the 11d backgrounds.
[Bhattacharyya, Grassi ,Mariño, Sen '12]
- Precision holography \rightarrow prediction for all higher-derivative and higher-loop effects in the bulk!

Beyond the Fermi gas?

- For general b there is no known Fermi gas.
- Conjecture: there is again an Airy function

$$
Z_{S_{b}^{3}}=e^{A} C^{-\frac{1}{3}} \mathrm{Ai}\left[C^{-\frac{1}{3}}(N-B)\right]+\mathcal{O}\left(e^{-\sqrt{N}}\right)
$$

theory	C	B	susy
$X_{7}=S^{7} / \mathbb{Z}_{k}$	$\frac{32}{\pi^{2} k} Q^{-4}$	$\frac{k}{24}-\frac{2}{3 k}\left(1-6 Q^{-2}\right)$	$\mathcal{N}=6$
$X_{7}=S^{7} / \mathbb{Z}_{r}$	$\frac{32}{\pi^{2} r} Q^{-4}$	$-\frac{7 r}{24}\left(1-\frac{16}{7} Q^{-2}\right)-\frac{1}{3 r}\left(1-10 Q^{-2}\right)$	$\mathcal{N}=4$
$X_{7}=N^{010} / \mathbb{Z}_{k}$	$\frac{12}{\pi^{2} k} Q^{-4}$	$-\frac{5 k}{48}\left(1-\frac{16}{5} Q^{-2}\right)-\frac{1}{3 k}\left(1-5 Q^{-2}\right)$	$\mathcal{N}=3$
$X_{7}=V^{52} / \mathbb{Z}_{r}$	$\frac{81}{4 \pi^{2} r} Q^{-4}$	$-\frac{r}{6}\left(1-\frac{9}{2} Q^{-2}\right)-\frac{1}{4 r}\left(1-9 Q^{-2}\right)$	$\mathcal{N}=2$

Beyond the Fermi gas?

- For general b there is no known Fermi gas.
- Conjecture: there is again an Airy function

$$
Z_{S_{b}^{3}}=e^{A} C^{-\frac{1}{3}} \mathrm{Ai}\left[C^{-\frac{1}{3}}(N-B)\right]+\mathcal{O}\left(e^{-\sqrt{N}}\right)
$$

theory	C	B	susy
$X_{7}=S^{7} / \mathbb{Z}_{k}$	$\frac{32}{\pi^{2} k} Q^{-4}$	$\frac{k}{24}-\frac{2}{3 k}\left(1-6 Q^{-2}\right)$	$\mathcal{N}=6$
$X_{7}=S^{7} / \mathbb{Z}_{r}$	$\frac{32}{\pi^{2} r} Q^{-4}$	$-\frac{7 r}{24}\left(1-\frac{16}{7} Q^{-2}\right)-\frac{1}{3 r}\left(1-10 Q^{-2}\right)$	$\mathcal{N}=4$
$X_{7}=N^{010} / \mathbb{Z}_{k}$	$\frac{12}{\pi^{2} k} Q^{-4}$	$-\frac{5 k}{48}\left(1-\frac{16}{5} Q^{-2}\right)-\frac{1}{3 k}\left(1-5 Q^{-2}\right)$	$\mathcal{N}=3$
$X_{7}=V^{52} / \mathbb{Z}_{r}$	$\frac{81}{4 \pi^{2} r} Q^{-4}$	$-\frac{r}{6}\left(1-\frac{9}{2} Q^{-2}\right)-\frac{1}{4 r}\left(1-9 Q^{-2}\right)$	$\mathcal{N}=2$

- Consistent with dual supergravity results up to and including log terms.
- Consistent with ongoing detailed numerical studies of the matrix model.

Beyond the Fermi gas?

- For general b there is no known Fermi gas.
- Conjecture: there is again an Airy function

$$
Z_{S_{b}^{3}}=e^{A} C^{-\frac{1}{3}} \mathrm{Ai}\left[C^{-\frac{1}{3}}(N-B)\right]+\mathcal{O}\left(e^{-\sqrt{N}}\right)
$$

theory	C	B	susy
$X_{7}=S^{7} / \mathbb{Z}_{k}$	$\frac{32}{\pi^{2} k} Q^{-4}$	$\frac{k}{24}-\frac{2}{3 k}\left(1-6 Q^{-2}\right)$	$\mathcal{N}=6$
$X_{7}=S^{7} / \mathbb{Z}_{r}$	$\frac{32}{\pi^{2} r} Q^{-4}$	$-\frac{7 r}{24}\left(1-\frac{16}{7} Q^{-2}\right)-\frac{1}{3 r}\left(1-10 Q^{-2}\right)$	$\mathcal{N}=4$
$X_{7}=N^{010} / \mathbb{Z}_{k}$	$\frac{12}{\pi^{2} k} Q^{-4}$	$-\frac{5 k}{48}\left(1-\frac{16}{5} Q^{-2}\right)-\frac{1}{3 k}\left(1-5 Q^{-2}\right)$	$\mathcal{N}=3$
$X_{7}=V^{52} / \mathbb{Z}_{r}$	$\frac{81}{4 \pi^{2} r} Q^{-4}$	$-\frac{r}{6}\left(1-\frac{9}{2} Q^{-2}\right)-\frac{1}{4 r}\left(1-9 Q^{-2}\right)$	$\mathcal{N}=2$

- Consistent with dual supergravity results up to and including log terms.
- Consistent with ongoing detailed numerical studies of the matrix model.
- Question: what structure produces this Airy function in M-theory? Is there a Fermi gas? A topological string? Something new?

A word on correlators

- The conjecture has implications for SCFT dynamics since the squashing parameter b couples to the stress tensor.
- $\mathcal{N}=2$ Ward identities imply
[Closset,Dumitrescu,Festuccia,Komargodski'12]

$$
\left\langle T_{\mu \nu}(x) T_{\rho \sigma}(0)\right\rangle=c_{T} \mathcal{I}_{\mu \nu \rho \sigma}(x) \quad \text { and } \quad c_{T}=\left.\frac{\partial^{2} \log Z(b)}{\partial b^{2}}\right|_{b=1}
$$

A word on correlators

- The conjecture has implications for SCFT dynamics since the squashing parameter b couples to the stress tensor.
- $\mathcal{N}=2$ Ward identities imply
[Closset, Dumitrescu,Festuccia,Komargodski'12]

$$
\left\langle T_{\mu \nu}(x) T_{\rho \sigma}(0)\right\rangle=c_{T} \mathcal{I}_{\mu \nu \rho \sigma}(x) \quad \text { and } \quad c_{T}=\left.\frac{\partial^{2} \log Z(b)}{\partial b^{2}}\right|_{b=1}
$$

- Taking more derivatives gives access to integrated correlators of stress tensors over the round S^{3}.
- An appropriate flat space limit gives a way to study scattering amplitudes in M-theory \rightarrow access HD structures in the M-theory EFT.
[Chester, Pufu, Yin'18; Binder, Chester, Pufu'18]

Twisted indices

The topologically twisted index (TTI)

- Put the SCFT on $M_{3}=S^{1} \times S^{2}$
- Turn on flux for exact R-sym $\int_{S^{2}} d A_{R}=2 \pi \rightarrow$ topological twist.
- Localization gives an exact result:
[Benini, Zaffaroni'15 \& '17; Closset, Kim'16]

$$
Z_{S^{1} \times S^{2}}=\sum_{\mathfrak{m}_{1}, \ldots, \mathfrak{m}_{p} \in \mathbb{Z}^{N}} \oint_{\mathcal{C}} Z_{\mathrm{int}}(u, \mathfrak{m})
$$

The topologically twisted index (TTI)

- Put the SCFT on $M_{3}=S^{1} \times S^{2}$
- Turn on flux for exact R-sym $\int_{S^{2}} d A_{R}=2 \pi \rightarrow$ topological twist.
- Localization gives an exact result:
[Benini, Zaffaroni'15 \& '17; Closset, Kim'16]

$$
Z_{S^{1} \times S^{2}}=\sum_{\mathfrak{m}_{1}, \ldots, \mathfrak{m}_{p} \in \mathbb{Z}^{N}} \oint_{\mathcal{C}} Z_{\mathrm{int}}(u, \mathfrak{m})
$$

- After some manipulations, the TTI can be written in the form

$$
Z_{S^{1} \times S^{2}}=\sum_{\left\{x_{i}, \tilde{x}_{j}\right\} \in \mathrm{BAE}} \mathcal{B}\left(x_{i}, \tilde{x}_{j}\right)
$$

- Sum over sols to transcendental eqs: Bethe Ansatz Equations. For ABJM,

$$
x_{i}^{k} \prod_{j=1}^{N} \frac{\left(1-i \frac{\tilde{x}_{j}}{x_{i}}\right)^{2}}{\left(1+i \frac{i}{\hat{x}_{j}}\right)^{2}}=(-1)^{N} \quad \text { and } \quad \tilde{x}_{j}^{k} \prod_{i=1}^{N} \frac{\left(1-\mathrm{i} \frac{\tilde{x}_{j}}{x_{i}}\right)^{2}}{\left(1+\mathrm{i} \frac{\tilde{x}_{j}}{x_{i}}\right)^{2}}=(-1)^{N}
$$

Numerical evaluation

- Known solution to BAE at large N :

[Benini, Hristov, Zaffaroni'15; Liu, Pando Zayas, Rathee, Zhao'17]

$$
\log x_{i}=N^{\frac{1}{2}} t_{i}-\mathrm{i} v_{i}, \quad \log \tilde{x}_{j}=N^{\frac{1}{2}} t_{j}-\mathrm{i} \tilde{v}_{j}
$$

where t_{i}, v_{i} and \tilde{v}_{j} do not scale with N.

- Use as init \rightarrow numerically solve BAE at finite (but large) N and fixed k.
- Evaluate TTI numerically and fit

$$
\log Z_{S^{1} \times S^{2}}=f_{3 / 2}(k) N^{\frac{3}{2}}+f_{1 / 2}(k) N^{\frac{1}{2}}+f_{\log } \log N+\sum_{s=0}^{L} f_{-s / 2} N^{-\frac{s}{2}}
$$

Numerical evaluation

- Known solution to BAE at large N :
[Benini, Hristov, Zaffaroni'15; Liu, Pando Zayas, Rathee, Zhao '17]

$$
\log x_{i}=N^{\frac{1}{2}} t_{i}-\mathrm{i} v_{i}, \quad \log \tilde{x}_{j}=N^{\frac{1}{2}} t_{j}-\mathrm{i} \tilde{v}_{j}
$$

where t_{i}, v_{i} and \tilde{v}_{j} do not scale with N.

- Use as init \rightarrow numerically solve BAE at finite (but large) N and fixed k.
- Evaluate TTI numerically and fit

$$
\log Z_{S^{1} \times S^{2}}=f_{3 / 2}(k) N^{\frac{3}{2}}+f_{1 / 2}(k) N^{\frac{1}{2}}+f_{\log } \log N+\sum_{s=0}^{L} f_{-s / 2} N^{-\frac{s}{2}}
$$

- Observe that the integer powers can be resummed in terms of a "shifted" N

$$
f_{\log } \log N+\sum_{s=1}^{L / 2} f_{-s} N^{-s} \simeq-\frac{1}{2} \log \widehat{N}
$$

- Fit with respect to \widehat{N} instead \rightarrow the fit terminates!

The ABJM twisted index

- Detailed numerics \rightarrow we can propose an analytic formula: [Bobev,Hong, VR‘22]

$$
-\log Z_{S^{1} \times S^{2}}=\frac{\pi \sqrt{2 k}}{3}\left(\widehat{N}^{\frac{3}{2}}-\frac{3}{k} \widehat{N}^{\frac{1}{2}}\right)+\frac{1}{2} \log \widehat{N}+f(k)+\mathcal{O}\left(e^{-\sqrt{N}}\right)
$$

with $\widehat{N}=N-\frac{k}{24}+\frac{2}{3 k}$

k	$R_{3 / 2}$	$R_{1 / 2}$	$f(k)_{\text {num }}$	σ_{0}
1	2.436×10^{-39}	5.319×10^{-37}	3.045951	7.834×10^{-36}
2	9.935×10^{-28}	4.336×10^{-25}	1.786596	4.310×10^{-24}
3	1.250×10^{-23}	8.185×10^{-21}	1.386373	6.330×10^{-20}

The ABJM twisted index

- Detailed numerics \rightarrow we can propose an analytic formula: [Bobev,Hong, VR‘22]

$$
-\log Z_{S^{1} \times S^{2}}=\frac{\pi \sqrt{2 k}}{3}\left(\widehat{N}^{\frac{3}{2}}-\frac{3}{k} \widehat{N}^{\frac{1}{2}}\right)+\frac{1}{2} \log \widehat{N}+f(k)+\mathcal{O}\left(e^{-\sqrt{N}}\right)
$$

with $\widehat{N}=N-\frac{k}{24}+\frac{2}{3 k}$

k	$R_{3 / 2}$	$R_{1 / 2}$	$f(k)_{\text {num }}$	σ_{0}
1	2.436×10^{-39}	5.319×10^{-37}	3.045951	7.834×10^{-36}
2	9.935×10^{-28}	4.336×10^{-25}	1.786596	4.310×10^{-24}
3	1.250×10^{-23}	8.185×10^{-21}	1.386373	6.330×10^{-20}

- All perturbative corrections in $1 / N$ resum to a (very!) simple form.
- Question: what is the interpretation of \widehat{N} in M -theory?

The ABJM twisted index

- Detailed numerics \rightarrow we can propose an analytic formula: [Bobev,Hong, VR‘22]

$$
-\log Z_{S^{1} \times S^{2}}=\frac{\pi \sqrt{2 k}}{3}\left(\widehat{N}^{\frac{3}{2}}-\frac{3}{k} \widehat{N}^{\frac{1}{2}}\right)+\frac{1}{2} \log \widehat{N}+f(k)+\mathcal{O}\left(e^{-\sqrt{N}}\right)
$$

with $\widehat{N}=N-\frac{k}{24}+\frac{2}{3 k}$

k	$R_{3 / 2}$	$R_{1 / 2}$	$f(k)_{\text {num }}$	σ_{0}
1	2.436×10^{-39}	5.319×10^{-37}	3.045951	7.834×10^{-36}
2	9.935×10^{-28}	4.336×10^{-25}	1.786596	4.310×10^{-24}
3	1.250×10^{-23}	8.185×10^{-21}	1.386373	6.330×10^{-20}

- All perturbative corrections in $1 / N$ resum to a (very!) simple form.
- Question: what is the interpretation of \widehat{N} in M-theory?
- Expand at large $N \rightarrow N^{\frac{3}{2}}, N^{\frac{1}{2}}, \log N$ terms... and all perturbative corrections.

Dual supergravity

- The index captures the path integral of M-theory on the 11d background

$$
\begin{aligned}
d s_{11}^{2} & =\frac{L^{2}}{4} d s_{4}^{2}+L^{2} d s_{\mathbb{C P}^{3}}^{2}+L^{2}\left(d \psi+\sigma+\frac{1}{4} A\right)^{2} \\
G_{4} & =\frac{3 L^{3}}{8} \mathrm{vol}_{4}-\frac{1}{4} \star_{4} F \wedge J
\end{aligned}
$$

with $\left(g_{4}, F=d A\right)$ the Euclidean Romans solution of $4 \mathrm{~d} \mathcal{N}=2$ minimal

Dual supergravity

- The index captures the path integral of M-theory on the 11d background

$$
\begin{aligned}
d s_{11}^{2} & =\frac{L^{2}}{4} d s_{4}^{2}+L^{2} d s_{\mathbb{C P}^{3}}^{2}+L^{2}\left(d \psi+\sigma+\frac{1}{4} A\right)^{2} \\
G_{4} & =\frac{3 L^{3}}{8} \mathrm{vol}_{4}-\frac{1}{4} \star_{4} F \wedge J
\end{aligned}
$$

with $\left(g_{4}, F=d A\right)$ the Euclidean Romans solution of $4 \mathrm{~d} \mathcal{N}=2$ minimal gauged supergravity.
[Romans'92; Genolini, Ipiña, Sparks'19; Bobev, Charles,Min'20]

- When $S^{2} \rightarrow \Sigma_{\mathfrak{g}>1}$ we can Wick rotate the solution to obtain a Lorentzian magnetic black hole interpolating between AdS_{4} and $\mathrm{AdS}_{2} \times \Sigma_{\mathfrak{g}}$ near-horizon.
- LO, NLO and NNLO for BH entropy match the corresponding terms in TTI.
[Benini,Hristov, Zaffaroni'16; Bobev,Hong, VR'22; Liu, Pando Zayas, Rathee, Zhao'17]

Dual supergravity

- The index captures the path integral of M-theory on the 11d background

$$
\begin{aligned}
d s_{11}^{2} & =\frac{L^{2}}{4} d s_{4}^{2}+L^{2} d s_{\mathbb{C P}^{3}}^{2}+L^{2}\left(d \psi+\sigma+\frac{1}{4} A\right)^{2} \\
G_{4} & =\frac{3 L^{3}}{8} \text { vol }_{4}-\frac{1}{4} \star_{4} F \wedge J
\end{aligned}
$$

with $\left(g_{4}, F=d A\right)$ the Euclidean Romans solution of $4 \mathrm{~d} \mathcal{N}=2$ minimal gauged supergravity.

- When $S^{2} \rightarrow \Sigma_{\mathfrak{g}>1}$ we can Wick rotate the solution to obtain a Lorentzian magnetic black hole interpolating between AdS_{4} and $\mathrm{AdS}_{2} \times \Sigma_{\mathfrak{g}}$ near-horizon.
- LO, NLO and NNLO for BH entropy match the corresponding terms in TTI.
[Benini, Hristov, Zaffaroni'16; Bobev, Hong, VR'22; Liu, Pando Zayas, Rathee, Zhao'17]
- Precision holography \rightarrow prediction for the corrected Bekenstein-Hawking entropy of this BPS black hole to all orders in $1 / N$.

Other SCFTs

- $\mathcal{N}=4$ with $X_{7}=S^{7} / \mathbb{Z}_{r} \rightarrow \widehat{N}=N+\frac{7 r}{24}+\frac{1}{3 r}$ and

$$
\frac{\log Z_{S^{1} \times \Sigma_{\mathfrak{g}}}}{\mathfrak{g}-1}=\frac{\pi \sqrt{2 r}}{3}\left(\widehat{N}^{\frac{3}{2}}-\left(\frac{r}{2}+\frac{5}{2 r}\right) \widehat{N}^{\frac{1}{2}}\right)+\frac{1}{2} \log \widehat{N}+g(r)
$$

Other SCFTs

- $\mathcal{N}=4$ with $X_{7}=S^{7} / \mathbb{Z}_{r} \rightarrow \widehat{N}=N+\frac{7 r}{24}+\frac{1}{3 r}$ and

$$
\frac{\log Z_{S^{1} \times \Sigma_{\mathfrak{g}}}}{\mathfrak{g}-1}=\frac{\pi \sqrt{2 r}}{3}\left(\widehat{N}^{\frac{3}{2}}-\left(\frac{r}{2}+\frac{5}{2 r}\right) \widehat{N}^{\frac{1}{2}}\right)+\frac{1}{2} \log \widehat{N}+g(r)
$$

Other SCFTs

- $\mathcal{N}=4$ with $X_{7}=S^{7} / \mathbb{Z}_{r} \rightarrow \widehat{N}=N+\frac{7 r}{24}+\frac{1}{3 r}$ and

$$
\frac{\log Z_{S^{1} \times \Sigma_{\mathfrak{g}}}}{\mathfrak{g}-1}=\frac{\pi \sqrt{2 r}}{3}\left(\widehat{N}^{\frac{3}{2}}-\left(\frac{r}{2}+\frac{5}{2 r}\right) \widehat{N}^{\frac{1}{2}}\right)+\frac{1}{2} \log \widehat{N}+g(r)
$$

- $\mathcal{N}=3$ with $X_{7}=N^{010} / \mathbb{Z}_{k} \rightarrow \widehat{N}=N+\frac{5 k}{48}+\frac{1}{3 k}$ and

$$
\frac{\log Z_{S^{1} \times \Sigma_{\mathfrak{g}}}}{\mathfrak{g}-1}=\frac{4 \pi \sqrt{k}}{3 \sqrt{3}}\left(\widehat{N}^{\frac{3}{2}}-\left(\frac{k}{4}+\frac{5}{4 k}\right) \widehat{N}^{\frac{1}{2}}\right)+\frac{1}{2} \log \widehat{N}+h(k)
$$

Other SCFTs

- $\mathcal{N}=4$ with $X_{7}=S^{7} / \mathbb{Z}_{r} \rightarrow \widehat{N}=N+\frac{7 r}{24}+\frac{1}{3 r}$ and

$$
\frac{\log Z_{S^{1} \times \Sigma_{\mathfrak{g}}}}{\mathfrak{g}-1}=\frac{\pi \sqrt{2 r}}{3}\left(\widehat{N}^{\frac{3}{2}}-\left(\frac{r}{2}+\frac{5}{2 r}\right) \widehat{N}^{\frac{1}{2}}\right)+\frac{1}{2} \log \widehat{N}+g(r)
$$

- $\mathcal{N}=3$ with $X_{7}=N^{010} / \mathbb{Z}_{k} \rightarrow \widehat{N}=N+\frac{5 k}{48}+\frac{1}{3 k}$ and

$$
\frac{\log Z_{S^{1} \times \Sigma_{\mathfrak{g}}}}{\mathfrak{g}-1}=\frac{4 \pi \sqrt{k}}{3 \sqrt{3}}\left(\widehat{N}^{\frac{3}{2}}-\left(\frac{k}{4}+\frac{5}{4 k}\right) \widehat{N}^{\frac{1}{2}}\right)+\frac{1}{2} \log \widehat{N}+h(k)
$$

- $\mathcal{N}=2$ with $X_{7}=Q^{111} / \mathbb{Z}_{k} \rightarrow \widehat{N}=N+\frac{k}{6}$ and

$$
\frac{\log Z_{S^{1} \times \Sigma_{\mathfrak{g}}}}{\mathfrak{g}-1}=\frac{4 \pi \sqrt{k}}{3 \sqrt{3}}\left(\widehat{N}^{\frac{3}{2}}-\left(\frac{k}{4}+\frac{3}{4 k}\right) \widehat{N}^{\frac{1}{2}}\right)+\frac{1}{2} \log \widehat{N}+I(k)
$$

Other SCFTs

- $\mathcal{N}=4$ with $X_{7}=S^{7} / \mathbb{Z}_{r} \rightarrow \widehat{N}=N+\frac{7 r}{24}+\frac{1}{3 r}$ and

$$
\frac{\log Z_{S^{1} \times \Sigma_{\mathfrak{g}}}}{\mathfrak{g}-1}=\frac{\pi \sqrt{2 r}}{3}\left(\widehat{N}^{\frac{3}{2}}-\left(\frac{r}{2}+\frac{5}{2 r}\right) \widehat{N}^{\frac{1}{2}}\right)+\frac{1}{2} \log \widehat{N}+g(r)
$$

- $\mathcal{N}=3$ with $X_{7}=N^{010} / \mathbb{Z}_{k} \rightarrow \widehat{N}=N+\frac{5 k}{48}+\frac{1}{3 k}$ and

$$
\frac{\log Z_{S^{1} \times \Sigma_{\mathfrak{g}}}}{\mathfrak{g}-1}=\frac{4 \pi \sqrt{k}}{3 \sqrt{3}}\left(\widehat{N}^{\frac{3}{2}}-\left(\frac{k}{4}+\frac{5}{4 k}\right) \widehat{N}^{\frac{1}{2}}\right)+\frac{1}{2} \log \widehat{N}+h(k)
$$

- $\mathcal{N}=2$ with $X_{7}=Q^{111} / \mathbb{Z}_{k} \rightarrow \widehat{N}=N+\frac{k}{6}$ and

$$
\frac{\log Z_{S^{1} \times \Sigma_{\mathfrak{g}}}}{\mathfrak{g}-1}=\frac{4 \pi \sqrt{k}}{3 \sqrt{3}}\left(\widehat{N}^{\frac{3}{2}}-\left(\frac{k}{4}+\frac{3}{4 k}\right) \widehat{N}^{\frac{1}{2}}\right)+\frac{1}{2} \log \widehat{N}+I(k)
$$

- In all cases, black hole solution exists \rightarrow prediction for entropy at finite N.

Type IIA string theory

ABJM on S^{3} in the IIA limit

- Reorganize the M-theory expansion in a IIA expansion

$$
F_{S^{3}}=-\sum_{g \geq 0}(2 \pi i)^{2 g-2} F_{g}(\lambda) k^{2-2 g}
$$

with $k=N / \lambda \sim g_{\mathrm{st}}^{-1}$ at fixed λ

ABJM on S^{3} in the IIA limit

- Reorganize the M-theory expansion in a IIA expansion

$$
F_{S^{3}}=-\sum_{g \geq 0}(2 \pi i)^{2 g-2} F_{g}(\lambda) k^{2-2 g}
$$

with $k=N / \lambda \sim g_{\text {st }}^{-1}$ at fixed λ

- Obtain genus-g free energies of IIA strings on $\mathrm{AdS}_{4} \times \mathbb{C P}^{3}$ (up to $\mathcal{O}\left(e^{-\sqrt{\lambda}}\right)$)

$$
\begin{aligned}
& F_{0}(\lambda)=\frac{4 \pi^{3} \sqrt{2}}{3} \hat{\lambda}^{\frac{3}{2}}+\frac{\zeta(3)}{2} \\
& F_{1}(\lambda)=\frac{\pi}{3 \sqrt{2}} \hat{\lambda}^{\frac{1}{2}}-\frac{1}{4} \log \hat{\lambda}+\frac{1}{6} \log \lambda+2 \zeta^{\prime}(-1)-\frac{3}{4} \log 2+\frac{1}{6} \log \frac{\pi}{2} \\
& F_{2}(\lambda)=\frac{5}{96 \pi^{3} \sqrt{2}} \hat{\lambda}^{-\frac{3}{2}}-\frac{1}{48 \pi^{2}} \hat{\lambda}^{-1}+\frac{1}{144 \pi \sqrt{2}} \hat{\lambda}^{-\frac{1}{2}}-\frac{1}{360}
\end{aligned}
$$

$$
\text { with } \hat{\lambda}=\lambda-\frac{1}{24} \text { the shifted 't Hooft coupling. }
$$

Comparing to the topological string

- Topo string on local $\mathbb{P}^{1} \times \mathbb{P}^{1}$ gives non-perturbative genus-1 free energy
[Huang, Klemm'06; Mariño, Pasquetti, Putrov'09; Drukker, Mariño, Putrov'11]

Triangles: perturbative result; circles: topological string.

ABJM on S_{b}^{3} and $S^{1} \times S^{2}$ in the IIA limit

- Our proposals give access to free energies of IIA string theory on backgrounds of the form $\mathcal{M}_{4} \times \mathbb{C P}^{3}$

$$
\begin{aligned}
& S_{b}^{3}: F_{0}(\lambda, b) \\
&=\frac{1}{4} Q^{2}\left(\frac{4 \pi^{3} \sqrt{2}}{3} \hat{\lambda}^{\frac{3}{2}}+\frac{\zeta(3)}{2}\right)-\frac{1}{4}\left(b-b^{-1}\right)^{2} \zeta(3) \\
& S^{1} \times S^{2}: \quad F_{0}(\lambda)=\frac{4 \pi^{3} \sqrt{2}}{3} \hat{\lambda}^{\frac{3}{2}}+\frac{3 \zeta(3)}{2}
\end{aligned}
$$

ABJM on S_{b}^{3} and $S^{1} \times S^{2}$ in the IIA limit

- Our proposals give access to free energies of IIA string theory on backgrounds of the form $\mathcal{M}_{4} \times \mathbb{C P}^{3}$

$$
\begin{aligned}
S_{b}^{3}: \quad F_{0}(\lambda, b) & =\frac{1}{4} Q^{2}\left(\frac{4 \pi^{3} \sqrt{2}}{3} \hat{\lambda}^{\frac{3}{2}}+\frac{\zeta(3)}{2}\right)-\frac{1}{4}\left(b-b^{-1}\right)^{2} \zeta(3) \\
S^{1} \times S^{2}: \quad F_{0}(\lambda) & =\frac{4 \pi^{3} \sqrt{2}}{3} \hat{\lambda}^{\frac{3}{2}}+\frac{3 \zeta(3)}{2}
\end{aligned}
$$

- No known dual topological string computation \rightarrow prediction.
- Goes much beyond the supergravity limit of large $N \&$ large λ.

ABJM on S_{b}^{3} and $S^{1} \times S^{2}$ in the IIA limit

- Our proposals give access to free energies of IIA string theory on backgrounds of the form $\mathcal{M}_{4} \times \mathbb{C P}^{3}$

$$
\begin{aligned}
S_{b}^{3}: \quad F_{0}(\lambda, b) & =\frac{1}{4} Q^{2}\left(\frac{4 \pi^{3} \sqrt{2}}{3} \hat{\lambda}^{\frac{3}{2}}+\frac{\zeta(3)}{2}\right)-\frac{1}{4}\left(b-b^{-1}\right)^{2} \zeta(3) \\
S^{1} \times S^{2}: \quad F_{0}(\lambda) & =\frac{4 \pi^{3} \sqrt{2}}{3} \hat{\lambda}^{\frac{3}{2}}+\frac{3 \zeta(3)}{2}
\end{aligned}
$$

- No known dual topological string computation \rightarrow prediction.
- Goes much beyond the supergravity limit of large $N \&$ large λ.
- Suggests that the free energies can be obtained to all orders in α^{\prime}.
- Question: is there a worldsheet string theory computation?

Conclusions

- Localized partition functions in SCFTs can be studied very precisely.
- Precision holography uncovers structures in M-theory: Airy, "shifted" N...
- Tests and predictions for AdS vacua, including AdS black holes.

Conclusions

- Localized partition functions in SCFTs can be studied very precisely.
- Precision holography uncovers structures in M-theory: Airy, "shifted" N...
- Tests and predictions for AdS vacua, including AdS black holes.
- Can also study
- SCI \leftrightarrow rotating black holes
- Mass deformations \leftrightarrow bulk matter multiplets
[Bobev, Choi, Hong, VR'22]
[Bobev, Hong, VR'22]

Conclusions

- Localized partition functions in SCFTs can be studied very precisely.
- Precision holography uncovers structures in M-theory: Airy, "shifted" N...
- Tests and predictions for AdS vacua, including AdS black holes.
- Can also study
- $\mathrm{SCI} \leftrightarrow$ rotating black holes
[Bobev, Choi, Hong, VR'22]
- Mass deformations \leftrightarrow bulk matter multiplets
- Reorganize the large N expansion into a genus expansion at fixed $\lambda=N / k$ \rightarrow predictions for type IIA string theory on $\mathcal{M}_{4} \times \mathrm{KE}_{6}$ to all orders in α^{\prime}

Conclusions

- Localized partition functions in SCFTs can be studied very precisely.
- Precision holography uncovers structures in M-theory: Airy, "shifted" N...
- Tests and predictions for AdS vacua, including AdS black holes.
- Can also study
- $\mathrm{SCI} \leftrightarrow$ rotating black holes
[Bobev, Choi, Hong, VR'22]
- Mass deformations \leftrightarrow bulk matter multiplets
[Bobev, Hong, VR'22]
- Reorganize the large N expansion into a genus expansion at fixed $\lambda=N / k$ \rightarrow predictions for type IIA string theory on $\mathcal{M}_{4} \times \mathrm{KE}_{6}$ to all orders in α^{\prime}
- Analytic derivation of the proposals?
- Develop bulk/string computations to match SCFT results to all orders? Supergravity localization can help.
cf. [Hristov,Lodato, VR‘17-18; Hristov‘22]

Conclusions

- Localized partition functions in SCFTs can be studied very precisely.
- Precision holography uncovers structures in M-theory: Airy, "shifted" N...
- Tests and predictions for AdS vacua, including AdS black holes.
- Can also study
- $\mathrm{SCI} \leftrightarrow$ rotating black holes
[Bobev, Choi, Hong, VR'22]
- Mass deformations \leftrightarrow bulk matter multiplets
[Bobev, Hong, VR'22]
- Reorganize the large N expansion into a genus expansion at fixed $\lambda=N / k$ \rightarrow predictions for type IIA string theory on $\mathcal{M}_{4} \times \mathrm{KE}_{6}$ to all orders in α^{\prime}
- Analytic derivation of the proposals?
- Develop bulk/string computations to match SCFT results to all orders? Supergravity localization can help.
cf. [Hristov,Lodato, VR'17-18; Hristov‘22]

> Thank you for your attention!

