Giant Gravitons and non-conformal vacua in Twisted Holography

Kasia Budzik
CERN, June 2023

Based on arxiv:2106.14859, arxiv:2211.01419 with Davide Gaiotto

Twisting Supersymmetric QFTs

- Twisting SQFT is the procedure of passing to a cohomology of a supercharge:

$$
\begin{aligned}
{[\boldsymbol{Q}, \phi] } & =0 & & (\boldsymbol{Q} \text {-closed) } \\
\phi & \sim \phi+[\boldsymbol{Q}, \psi] & & \text { (modulo } \boldsymbol{Q} \text {-exact) }
\end{aligned}
$$

Twisting Supersymmetric QFTs

- Twisting SQFT is the procedure of passing to a cohomology of a supercharge:

$$
\begin{aligned}
{[\boldsymbol{Q}, \phi] } & =0 & & (\boldsymbol{Q} \text {-closed) } \\
\phi & \sim \phi+[\boldsymbol{Q}, \psi] & & \text { (modulo } \boldsymbol{Q} \text {-exact) }
\end{aligned}
$$

- Physics motivation:
- Produces a consistent subsector of SQFT

Twisting Supersymmetric QFTs

- Twisting SQFT is the procedure of passing to a cohomology of a supercharge:

$$
\begin{aligned}
{[\boldsymbol{Q}, \phi] } & =0 & & (\boldsymbol{Q} \text {-closed) } \\
\phi & \sim \phi+[\boldsymbol{Q}, \psi] & & \text { (modulo } \boldsymbol{Q} \text {-exact) }
\end{aligned}
$$

- Physics motivation:
- Produces a consistent subsector of SQFT
- Restricts to protected (BPS) quantities

Twisting Supersymmetric QFTs

- Twisting SQFT is the procedure of passing to a cohomology of a supercharge:

$$
\begin{aligned}
{[\boldsymbol{Q}, \phi] } & =0 & & (\boldsymbol{Q} \text {-closed) } \\
\phi & \sim \phi+[\boldsymbol{Q}, \psi] & & \text { (modulo } \boldsymbol{Q} \text {-exact) }
\end{aligned}
$$

- Physics motivation:
- Produces a consistent subsector of SQFT
- Restricts to protected (BPS) quantities
- Correlation functions independent of some coordinates:

$$
\{\boldsymbol{Q}, \tilde{Q}\} \sim P
$$

Eg. topological or holomorphic twist

Twisting Supersymmetric QFTs

- Twisting SQFT is the procedure of passing to a cohomology of a supercharge:

$$
\begin{aligned}
{[\boldsymbol{Q}, \phi] } & =0 & & (\boldsymbol{Q} \text {-closed) } \\
\phi & \sim \phi+[\boldsymbol{Q}, \psi] & & \text { (modulo } \boldsymbol{Q} \text {-exact) }
\end{aligned}
$$

- Physics motivation:
- Produces a consistent subsector of SQFT
- Restricts to protected (BPS) quantities
- Correlation functions independent of some coordinates:

$$
\{\boldsymbol{Q}, \tilde{Q}\} \sim P
$$

Eg. topological or holomorphic twist

- Twisted holography: holographic duals of these twists

Twisted Holography

Example: protected subsector of $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$ [Costello, Gaiotto '18]:

$\mathcal{N}=4$ SYM with $U(N)$	\approx type IIB on $\mathrm{AdS}_{5} \times S^{5}$
" $Q+S$ " twist [Beem et al.]	
2d chiral algebra \mathcal{A}_{N}	\approx B-model on $S L(2, \mathbb{C}) \approx \mathrm{AdS}_{3} \times S^{3}$

Twisted Holography

Example: protected subsector of $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$ [Costello, Gaiotto '18]:

Motivation:

- Many simplifications occur

Twisted Holography

Example: protected subsector of $\mathrm{AdS}_{5} / \mathrm{CFT}_{4}$ [Costello, Gaiotto '18]:

Motivation:

- Many simplifications occur
- Connections to math

In this talk

(1) Review the duality

2d chiral algebra $\mathcal{A}_{N} \leftrightarrow$ topological B-model on $S L(2, \mathbb{C})$

In this talk

(1) Review the duality

2d chiral algebra $\mathcal{A}_{N} \leftrightarrow$ topological B-model on $S L(2, \mathbb{C})$

2 Correspondence between determinants and Giant Gravitons

- Match saddles of determinant correlation functions with D1-brane configurations
- Spectral curve construction

In this talk

(1) Review the duality

2d chiral algebra $\mathcal{A}_{N} \leftrightarrow$ topological B-model on $S L(2, \mathbb{C})$

2 Correspondence between determinants and Giant Gravitons

- Match saddles of determinant correlation functions with D1-brane configurations
- Spectral curve construction

3 Extend the duality to non-conformal vacua of the chiral algebra

In this talk

(1) Review the duality

2d chiral algebra $\mathcal{A}_{N} \leftrightarrow$ topological B-model on $S L(2, \mathbb{C})$

2 Correspondence between determinants and Giant Gravitons

- Match saddles of determinant correlation functions with D1-brane configurations
- Spectral curve construction

3 Extend the duality to non-conformal vacua of the chiral algebra
4 Future directions:

- "Bootstraping" to $\mathrm{AdS}_{5} \times S^{5}$
- LLM type geometries
- Holomorphic twist of $\mathcal{N}=4$ SYM

Twisted Holography

Twisted holography example: [Costello, Gaiotto '18]

| chiral algebra \mathcal{A}_{N} |
| :---: | :---: | :---: |
| gauged $\beta \gamma$ system in adj. of $U(N)$ |
| (large N expansion of) |$\quad \leftrightarrow \quad$| B-model on $S L(2, \mathbb{C})$ |
| :---: |
| (with coupling N^{-1}) |

Twisted Holography

Twisted holography example:
[Costello, Gaiotto '18]

chiral algebra \mathcal{A}_{N} gauged $\beta \gamma$ system in adj. of $U(N)$ (large N expansion of)	\leftrightarrow	B-model on $S L(2, \mathbb{C})$ (with coupling N^{-1})

Simplifications:

- Dependence on t'Hooft coupling drops out

Twisted Holography

Twisted holography example:
[Costello, Gaiotto '18]

$$
\begin{array}{ccc}
\text { chiral algebra } \mathcal{A}_{N} \\
\text { gauged } \beta \gamma \text { system in adj. of } U(N) \\
\text { (large } N \text { expansion of) }
\end{array} \quad \leftrightarrow \quad \begin{gathered}
\text { B-model on } S L(2, \mathbb{C}) \\
\text { (with coupling } N^{-1} \text {) }
\end{gathered}
$$

Simplifications:

- Dependence on t'Hooft coupling drops out
- (Almost) free field theory computations in the chiral algebra \mathcal{A}_{N}

Twisted Holography

Twisted holography example:
[Costello, Gaiotto '18]

```
            chiral algebra }\mp@subsup{\mathcal{A}}{N}{
gauged }\beta\gamma\mathrm{ system in adj. of U(N)
    (large N expansion of)
```


Simplifications:

- Dependence on t'Hooft coupling drops out
- (Almost) free field theory computations in the chiral algebra \mathcal{A}_{N}
- D1-branes are holomorphic curves in $S L(2, \mathbb{C})$

Chiral algebra \mathcal{A}_{N}

- Any $4 \mathrm{~d} \mathcal{N}=2$ SCFT contains a 2d chiral algebra subsector
[Beem, Lemos, Liendo, Peelaers, Rastelli, Rees '13]

Chiral algebra \mathcal{A}_{N}

- Any $4 \mathrm{~d} \mathcal{N}=2$ SCFT contains a 2d chiral algebra subsector
[Beem, Lemos, Liendo, Peelaers, Rastelli, Rees '13]
- The chiral algebra of $\mathcal{N}=4$ SYM is a gauged $\boldsymbol{\beta} \boldsymbol{\gamma}$ system:

$$
\begin{aligned}
X_{b}^{a}(z) Y_{d}^{c}(0) & \sim \delta_{d}^{a} \delta_{b}^{c} \frac{1}{N} \frac{1}{z} \\
Q_{\mathrm{BRST}} & \sim N \oint \operatorname{Tr}\left(c[X, Y]+\frac{1}{2} b[c, c]\right)
\end{aligned}
$$

Chiral algebra \mathcal{A}_{N}

- Any $4 \mathrm{~d} \mathcal{N}=2$ SCFT contains a 2d chiral algebra subsector
- The chiral algebra of $\mathcal{N}=4$ SYM is a gauged $\boldsymbol{\beta} \boldsymbol{\gamma}$ system:

$$
\begin{aligned}
X_{b}^{a}(z) Y_{d}^{c}(0) & \sim \delta_{d}^{a} \delta_{b}^{c} \frac{1}{N} \frac{1}{z} \\
Q_{\mathrm{BRST}} & \sim N \oint \operatorname{Tr}\left(c[X, Y]+\frac{1}{2} b[c, c]\right)
\end{aligned}
$$

- Free theory computations in the chiral algebra (for BRST closed operators)

Chiral algebra \mathcal{A}_{N}

- Any $4 \mathrm{~d} \mathcal{N}=2$ SCFT contains a 2d chiral algebra subsector
- The chiral algebra of $\mathcal{N}=4$ SYM is a gauged $\boldsymbol{\beta} \boldsymbol{\gamma}$ system:

$$
\begin{aligned}
X_{b}^{a}(z) Y_{d}^{c}(0) & \sim \delta_{d}^{a} \delta_{b}^{c} \frac{1}{N} \frac{1}{z} \\
Q_{\mathrm{BRST}} & \sim N \oint \operatorname{Tr}\left(c[X, Y]+\frac{1}{2} b[c, c]\right)
\end{aligned}
$$

- Free theory computations in the chiral algebra (for BRST closed operators)
- For the future, define a linear combination:

$$
Z(u ; z) \equiv X(z)+u Y(z)
$$

Chiral algebra \mathcal{A}_{N}

- Any $4 \mathrm{~d} \mathcal{N}=2$ SCFT contains a 2d chiral algebra subsector
- The chiral algebra of $\mathcal{N}=4$ SYM is a gauged $\boldsymbol{\beta} \boldsymbol{\gamma}$ system:

$$
\begin{aligned}
X_{b}^{a}(z) Y_{d}^{c}(0) & \sim \delta_{d}^{a} \delta_{b}^{c} \frac{1}{N} \frac{1}{z} \\
Q_{\mathrm{BRST}} & \sim N \oint \operatorname{Tr}\left(c[X, Y]+\frac{1}{2} b[c, c]\right)
\end{aligned}
$$

- Free theory computations in the chiral algebra (for BRST closed operators)
- For the future, define a linear combination:

$$
Z(u ; z) \equiv X(z)+u Y(z)
$$

- We will be interested in correlation functions of determinant operators

$$
\operatorname{det}(m+Z(u ; z))
$$

Topological B-model

- The spacetime theory is Kodaira-Spencer (BCOV) theory on 3d CY
- Holomorphic

Topological B-model

- The spacetime theory is Kodaira-Spencer (BCOV) theory on 3d CY
- Holomorphic
- Depends only on the complex structure (part of metric) of \mathcal{X}

Topological B-model

- The spacetime theory is Kodaira-Spencer (BCOV) theory on 3d CY
- Holomorphic
- Depends only on the complex structure (part of metric) of \mathcal{X}
- Fields are poly-vectorfields

$$
P V^{j, i}(\mathcal{X})=\Omega^{(0, i)}\left(\mathcal{X}, \wedge^{j} T \mathcal{X}\right) \quad\left(\text { locally } f_{m \ldots}^{n \ldots} \mathrm{~d} \bar{z}_{n} \ldots \partial_{z_{m}} \ldots\right)
$$

Topological B-model

- The spacetime theory is Kodaira-Spencer (BCOV) theory on 3d CY
- Holomorphic
- Depends only on the complex structure (part of metric) of \mathcal{X}
- Fields are poly-vectorfields

$$
P V^{j, i}(\mathcal{X})=\Omega^{(0, i)}\left(\mathcal{X}, \wedge^{j} T \mathcal{X}\right) \quad\left(\text { locally } f_{m \ldots}^{n \ldots} \mathrm{~d} \bar{z}_{n} \ldots \partial_{z_{m}} \ldots\right)
$$

For example,

$$
\beta \in P V^{1,1}(\mathcal{X})
$$

is a Beltrami differential which deforms the complex structure

Topological B-model

- The spacetime theory is Kodaira-Spencer (BCOV) theory on 3d CY
- Holomorphic
- Depends only on the complex structure (part of metric) of \mathcal{X}
- Fields are poly-vectorfields

$$
P V^{j, i}(\mathcal{X})=\Omega^{(0, i)}\left(\mathcal{X}, \wedge^{j} T \mathcal{X}\right) \quad\left(\text { locally } f_{m \ldots}^{n \ldots} \mathrm{~d} \bar{z}_{n} \ldots \partial_{z_{m}} \ldots\right)
$$

For example,

$$
\beta \in P V^{1,1}(\mathcal{X})
$$

is a Beltrami differential which deforms the complex structure

- D-branes wrap holomorphic submanifolds eg. D1-branes are holomorphic complex lines

Twisted Holography

(1) Consider topological B-model in flat space $\mathcal{X}=\mathbb{C}^{3}$

Twisted Holography

(1) Consider topological B-model in flat space $\mathcal{X}=\mathbb{C}^{3}$

2 The chiral algebra \mathcal{A}_{N} is supported by N D1-branes wrapping $\mathbb{C} \subset \mathbb{C}^{3}$

Twisted Holography

(1) Consider topological B-model in flat space $\mathcal{X}=\mathbb{C}^{3}$

2 The chiral algebra \mathcal{A}_{N} is supported by N D1-branes wrapping $\mathbb{C} \subset \mathbb{C}^{3}$

3 The stack of branes sources a Beltrami differential which deforms the complex structure:

$$
\mathbb{C}^{3} \backslash \mathbb{C} \rightarrow S L(2, \mathbb{C})
$$

Twisted Holography

(1) Consider topological B-model in flat space $\mathcal{X}=\mathbb{C}^{3}$

2 The chiral algebra \mathcal{A}_{N} is supported by N D1-branes wrapping $\mathbb{C} \subset \mathbb{C}^{3}$

3 The stack of branes sources a Beltrami differential which deforms the complex structure:

$$
\mathbb{C}^{3} \backslash \mathbb{C} \rightarrow S L(2, \mathbb{C})
$$

B-model on $\mathbb{C}^{3}+N$ D1-branes \longrightarrow B-model on $S L(2, \mathbb{C}) \approx \mathrm{AdS}_{3} \times S^{3}$

Giant Gravitons

- Determinant operators in $\mathcal{N}=4$ SYM are dual to D3-branes wrapping $\mathbb{R}_{+} \times S^{3}$ inside $\mathrm{AdS}_{5} \times S^{5}$

Giant Gravitons

- Determinant operators in $\mathcal{N}=4$ SYM are dual to D3-branes wrapping $\mathbb{R}_{+} \times S^{3}$ inside $\mathrm{AdS}_{5} \times S^{5}$

Giant Gravitons

- Determinant operators in $\mathcal{N}=4$ SYM are dual to D3-branes wrapping $\mathbb{R}_{+} \times S^{3}$ inside $\mathrm{AdS}_{5} \times S^{5}$

- Determinant operators in chiral algebra \mathcal{A}_{N} are dual to D1-branes wrapping

$$
\mathbb{C}^{*} \equiv \mathbb{R}_{+} \times S^{1} \text { inside } S L(2, \mathbb{C}) \equiv \mathrm{AdS}_{3} \times S^{3}
$$

Giant Gravitons

- Determinant operators in $\mathcal{N}=4$ SYM are dual to D3-branes wrapping $\mathbb{R}_{+} \times S^{3}$ inside $\mathrm{AdS}_{5} \times S^{5}$

- Determinant operators in chiral algebra \mathcal{A}_{N} are dual to D1-branes wrapping

$$
\mathbb{C}^{*} \equiv \mathbb{R}_{+} \times S^{1} \text { inside } S L(2, \mathbb{C}) \equiv \mathrm{AdS}_{3} \times S^{3}
$$

Giant Gravitons

- Determinant operators in $\mathcal{N}=4$ SYM are dual to D3-branes wrapping
$\mathbb{R}_{+} \times S^{3}$ inside $\mathrm{AdS}_{5} \times S^{5}$

- Determinant operators in chiral algebra \mathcal{A}_{N} are dual to D1-branes wrapping

$$
\mathbb{C}^{*} \equiv \mathbb{R}_{+} \times S^{1} \text { inside } S L(2, \mathbb{C}) \equiv \mathrm{AdS}_{3} \times S^{3}
$$

- Determinant operator:

$$
\operatorname{det}(m+Z(u ; z)), \quad Z(u ; z)=X(z)+u Y(z)
$$

- $z=$ position at the boundary of AdS_{3}
- u controls orientation of $S^{1} \subset S^{3}$
- m controls size of $S^{1} \subset S^{3}$

Giant Gravitons

- Many possible brane configurations with the same boundary behaviour

Giant Gravitons

- Many possible brane configurations with the same boundary behaviour

- We will match saddles ρ^{*} of correlation functions of determinants with brane configurations

Giant Gravitons

- Many possible brane configurations with the same boundary behaviour

- We will match saddles ρ^{*} of correlation functions of determinants with brane configurations
- m_{i}, u_{i}, z_{i} control boundary behaviour
- Saddles ρ will control the shape in the bulk

Determinant correlation functions

[Jiang, Komatsu, Vescovi '19]

- Fermionize determinants

$$
\operatorname{det}(m+Z(u ; z))=\int[\mathrm{d} \bar{\psi} \mathrm{~d} \psi] e^{\bar{\psi}(m+Z(u, z)) \psi}
$$

Determinant correlation functions

[Jiang, Komatsu, Vescovi '19]

- Fermionize determinants

$$
\operatorname{det}(m+Z(u ; z))=\int[\mathrm{d} \bar{\psi} \mathrm{~d} \psi] e^{\bar{\psi}(m+Z(u, z)) \psi}
$$

- Rewrite correlation function using auxiliary bosonic variables ρ_{j}^{i} for $i \neq j$, $\rho_{i}^{i} \equiv m_{i}$

$$
\left\langle\prod_{i}^{k} \operatorname{det}\left(m_{i}+Z\left(u_{i} ; z_{i}\right)\right)\right\rangle \sim \int[\mathrm{d} \rho] e^{N S[\rho]}
$$

with action

$$
S[\rho]=\frac{1}{2} \sum_{i \neq j} \frac{z_{i}-z_{j}}{u_{i}-u_{j}} \rho_{j}^{i} \rho_{i}^{j}+\log \operatorname{det} \rho
$$

Saddles and branes

- Saddle point equations in the matrix form:

$$
[\zeta, \rho]+\left[\mu, \rho^{-1}\right]=0
$$

where

$$
\zeta=\left(\begin{array}{ccc}
\mathbf{z}_{1} & & \\
& \ddots & \\
& & \mathbf{z}_{k}
\end{array}\right), \quad \mu=\left(\begin{array}{ccc}
\mathrm{u}_{1} & & \\
& \ddots & \\
& & \mathrm{u}_{k}
\end{array}\right), \quad \rho=\left(\begin{array}{ccc}
\mathrm{m}_{1} & & ? \\
& \ddots & \\
? & & \mathrm{~m}_{k}
\end{array}\right)
$$

Saddles and branes

- Saddle point equations in the matrix form:

$$
[\zeta, \rho]+\left[\mu, \rho^{-1}\right]=0
$$

where

$$
\zeta=\left(\begin{array}{ccc}
\mathbf{z}_{1} & & \\
& \ddots & \\
& & \mathbf{z}_{k}
\end{array}\right), \quad \mu=\left(\begin{array}{ccc}
\mathbf{u}_{1} & & \\
& \ddots & \\
& & \mathbf{u}_{k}
\end{array}\right), \quad \rho=\left(\begin{array}{ccc}
\mathrm{m}_{1} & & ? \\
& \ddots & \\
? & & \mathrm{~m}_{k}
\end{array}\right)
$$

- We will match saddles ρ to classical brane configurations in B-model on $S L(2, \mathbb{C})$

Saddles and branes

- Saddle point equations in the matrix form:

$$
[\zeta, \rho]+\left[\mu, \rho^{-1}\right]=0
$$

where

$$
\zeta=\left(\begin{array}{ccc}
\mathbf{z}_{1} & & \\
& \ddots & \\
& & \mathbf{z}_{k}
\end{array}\right), \quad \mu=\left(\begin{array}{ccc}
\mathrm{u}_{1} & & \\
& \ddots & \\
& & \mathbf{u}_{k}
\end{array}\right), \quad \rho=\left(\begin{array}{ccc}
\mathrm{m}_{1} & & ? \\
& \ddots & \\
? & & \mathrm{~m}_{k}
\end{array}\right)
$$

- We will match saddles ρ to classical brane configurations in B-model on $S L(2, \mathbb{C})$
- For each ρ we will define a spectral curve S_{ρ} in $S L(2, \mathbb{C})$

Saddles and branes

- Saddle point equations in the matrix form:

$$
[\zeta, \rho]+\left[\mu, \rho^{-1}\right]=0
$$

where

$$
\zeta=\left(\begin{array}{ccc}
\mathbf{z}_{1} & & \\
& \ddots & \\
& & \mathbf{z}_{k}
\end{array}\right), \quad \mu=\left(\begin{array}{ccc}
\mathrm{u}_{1} & & \\
& \ddots & \\
& & \mathbf{u}_{k}
\end{array}\right), \quad \rho=\left(\begin{array}{ccc}
\mathrm{m}_{1} & & ? \\
& \ddots & \\
? & & \mathrm{~m}_{k}
\end{array}\right)
$$

- We will match saddles ρ to classical brane configurations in B-model on $S L(2, \mathbb{C})$
- For each ρ we will define a spectral curve S_{ρ} in $S L(2, \mathbb{C})$
- We check it matches dual Giant Graviton brane

Saddles and branes

- Saddle point equations in the matrix form:

$$
[\zeta, \rho]+\left[\mu, \rho^{-1}\right]=0
$$

where

$$
\zeta=\left(\begin{array}{ccc}
\mathbf{z}_{1} & & \\
& \ddots & \\
& & \mathbf{z}_{k}
\end{array}\right), \quad \mu=\left(\begin{array}{ccc}
\mathrm{u}_{1} & & \\
& \ddots & \\
& & \mathbf{u}_{k}
\end{array}\right), \quad \rho=\left(\begin{array}{ccc}
\mathrm{m}_{1} & & ? \\
& \ddots & \\
? & & \mathrm{~m}_{k}
\end{array}\right)
$$

- We will match saddles ρ to classical brane configurations in B-model on $S L(2, \mathbb{C})$
- For each ρ we will define a spectral curve S_{ρ} in $S L(2, \mathbb{C})$
- We check it matches dual Giant Graviton brane
- $k>2$ would be hard in $A d S_{5} \times S^{5}$

Spectral curve

For each saddle ρ we define a spectral curve S_{ρ} :

- Define commuting matrices:

$$
B(a)=a \mu-\rho, \quad C(a)=a \zeta+\rho^{-1}, \quad D(a)=a \zeta \mu+\rho^{-1} \mu-\zeta \rho,
$$

Spectral curve

For each saddle ρ we define a spectral curve S_{ρ} :

- Define commuting matrices:

$$
B(a)=a \mu-\rho, \quad C(a)=a \zeta+\rho^{-1}, \quad D(a)=a \zeta \mu+\rho^{-1} \mu-\zeta \rho,
$$

- Define spectral curve:

$$
\begin{aligned}
\mathcal{S}_{\rho}=\{ & (a, b, c, d) \\
& \text { s.t. } b, c, d \text { are simultaneous eigenvalues of } B(a), C(a), D(a)\}
\end{aligned}
$$

Spectral curve

For each saddle ρ we define a spectral curve S_{ρ} :

- Define commuting matrices:

$$
B(a)=a \mu-\rho, \quad C(a)=a \zeta+\rho^{-1}, \quad D(a)=a \zeta \mu+\rho^{-1} \mu-\zeta \rho,
$$

- Define spectral curve:

$$
\begin{aligned}
\mathcal{S}_{\rho}=\{ & (a, b, c, d) \\
& \text { s.t. } b, c, d \text { are simultaneous eigenvalues of } B(a), C(a), D(a)\}
\end{aligned}
$$

- The matrices are defined so that:
- They commute when ρ satisfies the saddle point equations
- They satisfy

$$
a D(a)-B(a) C(a)=1
$$

- They have the expected boundary behavior

Holographic checks

- Boundary behaviour $a \rightarrow \infty$:

$$
\frac{B(a)}{a}=\left(\begin{array}{lll}
u_{1}-\frac{m_{1}}{a} & & \\
& \ddots & \\
& & u_{k}-\frac{m_{k}}{a}
\end{array}\right)+\ldots, \quad \frac{C(a)}{a}=\left(\begin{array}{l}
z_{1} \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\end{array}\right)+\ldots
$$

Holographic checks

- Boundary behaviour $a \rightarrow \infty$:

$$
\frac{B(a)}{a}=\left(\begin{array}{lll}
u_{1}-\frac{m_{1}}{a} & & \\
& \ddots & \\
& & u_{k}-\frac{m_{k}}{a}
\end{array}\right)+\ldots, \quad \frac{C(a)}{a}=\left(\begin{array}{l}
z_{1} \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\end{array}\right)+\ldots
$$

\Longrightarrow spectral curve S_{ρ} goes to the boundary of $S L(2, \mathbb{C})$ in k points

Holographic checks

- Boundary behaviour $a \rightarrow \infty$:

$$
\frac{B(a)}{a}=\left(\begin{array}{ccc}
u_{1}-\frac{m_{1}}{a} & & \\
& \ddots & \\
& & u_{k}-\frac{m_{k}}{a}
\end{array}\right)+\ldots, \quad \frac{C(a)}{a}=\left(\begin{array}{l}
z_{1} \\
\\
\\
\\
\\
\\
\\
\\
\\
\\
\end{array}\right)+\ldots
$$

\Longrightarrow spectral curve S_{ρ} goes to the boundary of $S L(2, \mathbb{C})$ in k points

- Various holographic checks:
- Correlation functions of determinants with a single-trace [Jiang, Komatsu, Vescovi '19]
- Action $S[\rho]$ vs S [brane]
- Modifications of determinants / excitations of the brane

Determinant modifications

- For example

$$
\operatorname{det} X \rightarrow \frac{1}{N!} \varepsilon \varepsilon\left(X, X, X, \ldots, Y^{2}\right)
$$

[^0]
Determinant modifications

- For example

$$
\operatorname{det} X \rightarrow \frac{1}{N!} \varepsilon \varepsilon\left(X, X, X, \ldots, Y^{2}\right)
$$

- Employ the global symmetry algebra* of \mathcal{A}_{N} :

$$
\oint z^{k} \operatorname{Tr} Z^{\left(i_{1}\right.} Z^{i_{2}} \ldots Z^{\left.i_{n}\right)}, \quad 0 \leq k \leq n-2
$$

[^1]
Determinant modifications

- For example

$$
\operatorname{det} X \rightarrow \frac{1}{N!} \varepsilon \varepsilon\left(X, X, X, \ldots, Y^{2}\right)
$$

- Employ the global symmetry algebra* of \mathcal{A}_{N} :

$$
\oint z^{k} \operatorname{Tr} Z^{\left(i_{1}\right.} Z^{i_{2}} \ldots Z^{\left.i_{n}\right)}, \quad 0 \leq k \leq n-2
$$

- For example, the lowest modes are the $s u(2)$ generators:

$$
\oint \operatorname{Tr} X X, \quad \oint \operatorname{Tr} X Y, \quad \oint \operatorname{Tr} Y Y
$$

[^2]
Determinant modifications

- For example

$$
\operatorname{det} X \rightarrow \frac{1}{N!} \varepsilon \varepsilon\left(X, X, X, \ldots, Y^{2}\right)
$$

- Employ the global symmetry algebra* of \mathcal{A}_{N} :

$$
\oint z^{k} \operatorname{Tr} Z^{\left(i_{1}\right.} Z^{i_{2}} \ldots Z^{\left.i_{n}\right)}, \quad 0 \leq k \leq n-2
$$

- For example, the lowest modes are the $s u(2)$ generators:

$$
\oint \operatorname{Tr} X X, \quad \oint \operatorname{Tr} X Y, \quad \oint \operatorname{Tr} Y Y
$$

- Create modifications by acting with the modes, eg.

$$
\oint \operatorname{Tr} Y^{4}(z) \operatorname{det} X(0) \sim \varepsilon \varepsilon\left(X, X, X, \ldots, Y^{3}\right)+\ldots
$$

[^3]
Determinant modifications

- We computed 2-pt functions of determinant modifications

$$
\left.\left\langle\left[J_{p^{\prime}, q^{\prime}}^{\left(n^{\prime}\right)}, \operatorname{det} Y(\infty)\right]\left[J_{p, q}^{(n)}, \operatorname{det} X(0)\right]\right\rangle\right|_{N \rightarrow \infty}
$$

Determinant modifications

- We computed 2-pt functions of determinant modifications

$$
\left.\left\langle\left[J_{p^{\prime}, q^{\prime}}^{\left(n^{\prime}\right)}, \operatorname{det} Y(\infty)\right]\left[J_{p, q}^{(n)}, \operatorname{det} X(0)\right]\right\rangle\right|_{N \rightarrow \infty}
$$

- There are only two types of determinant modifications:

$$
\begin{aligned}
J_{p, p-1}^{n}: & \operatorname{det} X \longrightarrow n \varepsilon \varepsilon\left(X, X, \ldots, Y^{1-2 p}\right) \\
J_{p, p+1}^{n}: & \operatorname{det} X \longrightarrow n \varepsilon \varepsilon\left(X, X, \ldots, Y^{-2 p-1} \partial X\right) \\
& +n \varepsilon \varepsilon\left(X, X, \ldots, \partial^{2} Y^{-2 p-3}\right)
\end{aligned}
$$

Brane excitations

- $\langle\operatorname{det} Y(\infty) \operatorname{det} X(0)\rangle$ has a single nontrivial saddle corresponding to the brane:

$$
\left(\begin{array}{cc}
a & 0 \\
0 & 1 / a
\end{array}\right) \subset S L(2, \mathbb{C})
$$

Brane excitations

- $\langle\operatorname{det} Y(\infty) \operatorname{det} X(0)\rangle$ has a single nontrivial saddle corresponding to the brane:

$$
\left(\begin{array}{cc}
a & 0 \\
0 & 1 / a
\end{array}\right) \subset S L(2, \mathbb{C})
$$

- Holographic global symmetry algebra acts by

Brane excitations

- $\langle\operatorname{det} Y(\infty) \operatorname{det} X(0)\rangle$ has a single nontrivial saddle corresponding to the brane:

$$
\left(\begin{array}{cc}
a & 0 \\
0 & 1 / a
\end{array}\right) \subset S L(2, \mathbb{C})
$$

- Holographic global symmetry algebra acts by

$$
\text { holomorphic divergence-free vector fields on } S L(2, \mathbb{C})
$$

- There are only two types of brane excitations:

$$
\begin{array}{lll}
J_{p, p-1}^{(n)}: & \left(\begin{array}{cc}
a & 0 \\
0 & 1 / a
\end{array}\right) \longrightarrow\left(\begin{array}{cc}
a & \delta b \\
0 & 1 / a
\end{array}\right), & \delta b \sim+n a^{1-2 p} \\
J_{p, p+1}^{(n)}: & \left(\begin{array}{cc}
a & 0 \\
0 & 1 / a
\end{array}\right) \longrightarrow\left(\begin{array}{cc}
a & 0 \\
\delta c & 1 / a
\end{array}\right), & \delta c \sim-n a^{-1-2 p}
\end{array}
$$

Coulomb branch geometries

- Duality can be extended to non-conformal vacua of the chiral algebra \mathcal{A}_{N}

Coulomb branch geometries

- Duality can be extended to non-conformal vacua of the chiral algebra \mathcal{A}_{N}
- Twisted analog of

Coulomb branch of $\mathcal{N}=4 \mathrm{SYM} \longleftrightarrow$ multi-center solutions

Coulomb branch geometries

- Duality can be extended to non-conformal vacua of the chiral algebra \mathcal{A}_{N}
- Twisted analog of

Coulomb branch of $\mathcal{N}=4 \mathrm{SYM} \longleftrightarrow$ multi-center solutions

- Backreact stack of non-coincident branes
- Dual Calabi-Yau geometries are deformations of $S L(2, \mathbb{C})$

$$
z_{I}-z_{I^{\prime}}=+\frac{N_{i} / N}{\left(x-x_{i}\right)\left(y-y_{i}\right)}
$$

For standard $S L(2, \mathbb{C})$ geometry:

$$
z_{0}-z_{\infty}=\frac{1}{x y}
$$

Coulomb branch geometries

- Duality can be extended to non-conformal vacua of the chiral algebra \mathcal{A}_{N}
- Twisted analog of

Coulomb branch of $\mathcal{N}=4 \mathrm{SYM} \longleftrightarrow$ multi-center solutions

- Backreact stack of non-coincident branes
- Dual Calabi-Yau geometries are deformations of $S L(2, \mathbb{C})$

$$
z_{I}-z_{I^{\prime}}=+\frac{N_{i} / N}{\left(x-x_{i}\right)\left(y-y_{i}\right)}
$$

For standard $S L(2, \mathbb{C})$ geometry:

$$
z_{0}-z_{\infty}=\frac{1}{x y}
$$

- Holographic check:
- Determinant correlation functions
 (with a single-trace) and dual Giant Graviton branes

Future directions

- Spectral curve construction in other examples of twisted or free field holography

Future directions

- Spectral curve construction in other examples of twisted or free field holography
- Find SUSY D3-branes in $\mathrm{AdS}_{5} \times S^{5}$ that correspond to our B-model D1-branes

Future directions

- Spectral curve construction in other examples of twisted or free field holography
- Find SUSY D3-branes in $\mathrm{AdS}_{5} \times S^{5}$ that correspond to our B-model D1-branes
- Mathematical question:

Solutions of matrix equations \Longleftrightarrow Holomorphic curves

$$
[\zeta, \rho]+\left[\mu, \rho^{-1}\right]=0 \quad \text { in } S L(2, \mathbb{C})
$$

\Rightarrow Spectral curve construction
\Leftarrow For genus $g=0$, we can go back
\Leftarrow For genus $g>0$, we don't know

Future directions

- Consider $\mathcal{O}\left(N^{2}\right)$ operators eg. $(\operatorname{det} Z)^{N}$, which are dual to backreacted geometries

Future directions

- Consider $\mathcal{O}\left(N^{2}\right)$ operators eg. $(\operatorname{det} Z)^{N}$, which are dual to backreacted geometries

New holomorphic coordinates:

$$
\begin{aligned}
& \tilde{a}_{1}=a e^{-\frac{\bar{c}}{b} \frac{1}{|b|^{2}+|c|^{2}}}, \quad b \neq 0 \\
& \tilde{a}_{2}=a e^{\frac{\bar{b}}{c} \frac{1}{|b|^{2}+|c|^{2}}}, \quad c \neq 0
\end{aligned}
$$

with transition:

$$
\frac{\tilde{a}_{1}}{\tilde{a}_{2}}=e^{\frac{1}{b c}}
$$

Future directions

- Consider $\mathcal{O}\left(N^{2}\right)$ operators eg. $(\operatorname{det} Z)^{N}$, which are dual to backreacted geometries

New holomorphic coordinates:

$$
\begin{aligned}
& \tilde{a}_{1}=a e^{-\frac{\bar{c}}{b} \frac{1}{|b|^{2}+|c|^{2}}}, \quad b \neq 0 \\
& \tilde{a}_{2}=a e^{\frac{\bar{b}}{c} \frac{1}{|b|^{2}+|c|^{2}}}, \quad c \neq 0
\end{aligned}
$$

with transition:

$$
\frac{\tilde{a}_{1}}{\tilde{a}_{2}}=e^{\frac{1}{b c}}
$$

- Holographic dual of the holomorphic twist of $\mathcal{N}=4$ SYM

Future directions

- Consider $\mathcal{O}\left(N^{2}\right)$ operators eg. $(\operatorname{det} Z)^{N}$, which are dual to backreacted geometries

New holomorphic coordinates:

$$
\begin{aligned}
& \tilde{a}_{1}=a e^{-\frac{\bar{c}}{b} \frac{1}{|b|^{2}+|c|^{2}}}, \quad b \neq 0 \\
& \tilde{a}_{2}=a e^{\frac{\bar{b}}{c} \frac{1}{|b|^{2}+|c|^{2}}}, \quad c \neq 0
\end{aligned}
$$

with transition:

$$
\frac{\tilde{a}_{1}}{\tilde{a}_{2}}=e^{\frac{1}{b c}}
$$

- Holographic dual of the holomorphic twist of $\mathcal{N}=4$ SYM
- Proposed to be topological B-model on \mathbb{C}^{5}, in the presence of a certain background field

Future directions

- Consider $\mathcal{O}\left(N^{2}\right)$ operators eg. $(\operatorname{det} Z)^{N}$, which are dual to backreacted geometries

New holomorphic coordinates:

$$
\begin{aligned}
& \tilde{a}_{1}=a e^{-\frac{\bar{c}}{b} \frac{1}{|b|^{2}+|c|^{2}}}, \quad b \neq 0 \\
& \tilde{a}_{2}=a e^{\frac{\bar{b}}{c} \frac{1}{|b|^{2}+|c|^{2}}}, \quad c \neq 0
\end{aligned}
$$

with transition:

$$
\frac{\tilde{a}_{1}}{\tilde{a}_{2}}=e^{\frac{1}{b c}}
$$

- Holographic dual of the holomorphic twist of $\mathcal{N}=4$ SYM
- Proposed to be topological B-model on \mathbb{C}^{5}, in the presence of a certain background field
[Costello, Li '16]
- Maybe useful for "non-multigraviton" cohomology classes?

Future directions

- Consider $\mathcal{O}\left(N^{2}\right)$ operators eg. $(\operatorname{det} Z)^{N}$, which are dual to backreacted geometries

New holomorphic coordinates:

$$
\begin{aligned}
& \tilde{a}_{1}=a e^{-\frac{\bar{c}}{b} \frac{1}{|b|^{2}+|c|^{2}}}, \quad b \neq 0 \\
& \tilde{a}_{2}=a e^{\frac{\bar{b}}{c} \frac{1}{|b|^{2}+|c|^{2}}}, \quad c \neq 0
\end{aligned}
$$

with transition:

$$
\frac{\tilde{a}_{1}}{\tilde{a}_{2}}=e^{\frac{1}{b c}}
$$

- Holographic dual of the holomorphic twist of $\mathcal{N}=4 \mathrm{SYM}$
- Proposed to be topological B-model on \mathbb{C}^{5}, in the presence of a certain background field
- Maybe useful for "non-multigraviton" cohomology classes?

Thank you!

Holographic checks

Correlation function of determinants with a single-trace [Jiang, Komatsu, Vescovi '19]:

$$
\left.\left\langle\prod_{i} \mathcal{D}\left(m_{i} ; u_{i} ; z_{i}\right) N \operatorname{Tr} Z^{n}\right\rangle\right|_{N \rightarrow \infty} \approx-\left.e^{N S\left[\rho^{*}\right]} N \operatorname{Tr}_{k \times k}\left(-\rho \frac{\mu-u}{\zeta-z}\right)^{n}\right|_{\rho=\rho^{*}}
$$

We can rewrite it to a form

where α is a Kodaira-Spencer field sourced by $N \operatorname{Tr} Z^{n}$:

$$
\alpha=\partial\left((b-u a)^{n} \delta_{\frac{c}{a}=z}+(z a-c)^{-n} \delta_{\frac{b}{a}=u}\right)
$$

[^0]: *There are also 3 other types of generators but we focus on one tower.

[^1]: *There are also 3 other types of generators but we focus on one tower.

[^2]: *There are also 3 other types of generators but we focus on one tower.

[^3]: *There are also 3 other types of generators but we focus on one tower.

