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Twisting Supersymmetric QFTs

• Twisting SQFT is the procedure of passing to a cohomology of a supercharge:

[Q, ϕ] = 0 (Q-closed)

ϕ ∼ ϕ+ [Q, ψ] (modulo Q-exact)

• Physics motivation:

▶ Produces a consistent subsector of SQFT

▶ Restricts to protected (BPS) quantities

▶ Correlation functions independent of some coordinates:

{Q, Q̃} ∼ P

Eg. topological or holomorphic twist

• Twisted holography: holographic duals of these twists
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Twisted Holography

Example: protected subsector of AdS5/CFT4 [Costello, Gaiotto ’18]:

N = 4 SYM with U(N) ≈ type IIB on AdS5 × S5

2d chiral algebra AN ≈ B-model on SL(2,C) ≈ AdS3 × S3

“Q+ S” twist
[Beem et al.]

twisted
strings/SUGRA

[Costello, Li]

Motivation:

• Many simplifications occur

• Connections to math
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In this talk

1 Review the duality [Costello, Gaiotto ’18]

2d chiral algebra AN ↔ topological B-model on SL(2,C)

2 Correspondence between determinants and Giant Gravitons

▶ Match saddles of determinant correlation functions with D1-brane
configurations

▶ Spectral curve construction

3 Extend the duality to non-conformal vacua of the chiral algebra

4 Future directions:

▶ “Bootstraping” to AdS5 × S5

▶ LLM type geometries

▶ Holomorphic twist of N = 4 SYM
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Twisted Holography

Twisted holography example: [Costello, Gaiotto ’18]

chiral algebra AN
gauged βγ system in adj. of U(N)

(large N expansion of)
↔ B-model on SL(2,C)

(with coupling N−1)

Simplifications:

• Dependence on t’Hooft coupling drops out

• (Almost) free field theory computations in the chiral algebra AN

• D1-branes are holomorphic curves in SL(2,C)
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Chiral algebra AN

• Any 4d N = 2 SCFT contains a 2d chiral algebra subsector
[Beem, Lemos, Liendo, Peelaers, Rastelli, Rees ’13]

• The chiral algebra of N = 4 SYM is a gauged βγ system:

Xa
b (z)Y

c
d (0) ∼ δadδcb

1

N

1

z

QBRST ∼ N
∮

Tr

(
c[X,Y ] +

1

2
b[c, c]

)
• Free theory computations in the chiral algebra (for BRST closed operators)

• For the future, define a linear combination:

Z(u; z) ≡ X(z) + uY (z)

• We will be interested in correlation functions of determinant operators

det(m+ Z(u; z))
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Topological B-model

• The spacetime theory is Kodaira-Spencer (BCOV) theory on 3d CY

▶ Holomorphic

▶ Depends only on the complex structure (part of metric) of X

▶ Fields are poly-vectorfields

PV j,i(X ) = Ω(0,i)(X ,∧jTX ) (locally fn...m...dz̄n . . . ∂zm . . . )

For example,
β ∈ PV 1,1(X )

is a Beltrami differential which deforms the complex structure

• D-branes wrap holomorphic submanifolds eg. D1-branes are holomorphic
complex lines
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Twisted Holography

1 Consider topological B-model in flat
space X = C3

2 The chiral algebra AN is supported
by N D1-branes wrapping C ⊂ C3

B-model on C3

chiral algebra AN

N D1-branes

3 The stack of branes sources a Beltrami differential which deforms
the complex structure:

C3 \ C→ SL(2,C)

[Costello, Gaiotto ’18]

B-model on C3 +N D1-branes −→ B-model on SL(2,C) ≈ AdS3 × S3

↑
AN
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Giant Gravitons
• Determinant operators in N = 4 SYM are dual to D3-branes wrapping

R+ × S3 inside AdS5 × S5

×
AdS5 S5

S3

R+

• Determinant operators in chiral algebra AN are dual to D1-branes wrapping

C∗ ≡ R+ × S1 inside SL(2,C) ≡ AdS3 × S3

×
EAdS3 S3

S1

R+

• Determinant operator:

det(m+ Z(u; z)), Z(u; z) = X(z) + uY (z)

▶ z = position at the boundary of AdS3

▶ u controls orientation of S1 ⊂ S3

▶ m controls size of S1 ⊂ S3
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Giant Gravitons

• Many possible brane configurations with the same boundary behaviour

SL(2,C)

• We will match saddles ρ∗ of correlation functions of determinants with brane
configurations

▶ mi, ui, zi control boundary behaviour

▶ Saddles ρ will control the shape in the bulk
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Determinant correlation functions
[Jiang, Komatsu, Vescovi ’19]

• Fermionize determinants

det(m+ Z(u; z)) =

∫
[dψ̄dψ] eψ̄(m+Z(u,z))ψ

• Rewrite correlation function using auxiliary bosonic variables ρij for i ̸= j,
ρii ≡ mi

〈 k∏
i

det(mi + Z(ui; zi))
〉
∼

∫
[dρ] eN S[ρ]

with action
S[ρ] =

1

2

∑
i ̸=j

zi − zj
ui − uj

ρijρ
j
i + log det ρ

11 / 20
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Saddles and branes

• Saddle point equations in the matrix form:

[ζ, ρ] + [µ, ρ−1] = 0

where

ζ =

z1
. . .

zk

, µ =

u1
. . .

uk

, ρ =

m1 ?
. . .

? mk



• We will match saddles ρ to classical brane configurations in B-model on
SL(2,C)

• For each ρ we will define a spectral curve Sρ in SL(2,C)

• We check it matches dual Giant Graviton brane

• k > 2 would be hard in AdS5 × S5

12 / 20
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Spectral curve
For each saddle ρ we define a spectral curve Sρ:

• Define commuting matrices:

B(a) = aµ− ρ, C(a) = aζ + ρ−1, D(a) = aζµ+ ρ−1µ− ζρ,

• Define spectral curve:

Sρ =
{
(a, b, c, d)

s.t. b, c, d are simultaneous eigenvalues of B(a), C(a), D(a)
}

• The matrices are defined so that:

▶ They commute when ρ satisfies the saddle point equations

▶ They satisfy

aD(a)−B(a)C(a) = 1

▶ They have the expected boundary behavior
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Holographic checks

• Boundary behaviour a→∞:

B(a)

a
=

u1−m1
a

. . .
uk−mk

a

+ . . . ,
C(a)

a
=

z1
. . .

zk

+ . . .

=⇒ spectral curve Sρ goes to the boundary of SL(2,C) in k points

• Various holographic checks:

▶ Correlation functions of determinants with
a single-trace [Jiang, Komatsu, Vescovi ’19]

▶ Action S[ρ] vs S[brane]

▶ Modifications of determinants / excitations of the brane

TrZn
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Determinant modifications
• For example

detX → 1

N !
εε(X,X,X, . . . , Y 2)

• Employ the global symmetry algebra∗ of AN :∮
zk TrZ(i1Zi2 . . . Zin), 0 ≤ k ≤ n− 2

• For example, the lowest modes are the su(2) generators:∮
TrXX,

∮
TrXY,

∮
TrY Y

• Create modifications by acting with the modes, eg.∮
TrY 4(z) detX(0) ∼ εε(X,X,X, . . . , Y 3) + . . .

∗There are also 3 other types of generators but we focus on one tower.
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Determinant modifications

• We computed 2-pt functions of determinant modifications〈
[J

(n′)
p′,q′ , detY (∞)][J(n)

p,q , detX(0)]
〉 ∣∣∣

N→∞

• There are only two types of determinant modifications:

Jnp,p−1 : detX −→n εε(X,X, . . . , Y 1−2p)

Jnp,p+1 : detX −→n εε(X,X, . . . , Y −2p−1∂X)

+n εε(X,X, . . . , ∂2Y −2p−3)
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Brane excitations
• ⟨detY (∞) detX(0)⟩ has a single nontrivial saddle corresponding to the

brane:

(
a 0
0 1/a

)
⊂ SL(2,C)

detX

detY

• Holographic global symmetry algebra acts by [Costello, Gaiotto]

holomorphic divergence-free vector fields on SL(2,C)

• There are only two types of brane excitations:

J
(n)
p,p−1 :

(
a 0
0 1/a

)
−→

(
a δb
0 1/a

)
, δb ∼ +na1−2p

J
(n)
p,p+1 :

(
a 0
0 1/a

)
−→

(
a 0
δc 1/a

)
, δc ∼ −na−1−2p
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Coulomb branch geometries
• Duality can be extended to non-conformal vacua of the chiral algebra AN

• Twisted analog of

Coulomb branch of N = 4 SYM ←→ multi-center solutions

• Backreact stack of non-coincident branes

• Dual Calabi-Yau geometries are deformations of SL(2,C)

zI − zI′ = +
Ni/N

(x− xi)(y − yi)

For standard SL(2,C) geometry:

z0 − z∞ =
1

xy

. . .

(x1, y1)

(xn, yn)

N1

Nn

• Holographic check:

▶ Determinant correlation functions
(with a single-trace) and dual Giant Graviton branes
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Future directions

• Spectral curve construction in other examples of twisted or free field
holography

• Find SUSY D3-branes in AdS5 × S5 that correspond to our B-model
D1-branes

• Mathematical question:

Solutions of matrix equations ⇐⇒ Holomorphic curves

[ζ, ρ] + [µ, ρ−1] = 0 in SL(2,C)

⇒ Spectral curve construction

⇐ For genus g = 0, we can go back

⇐ For genus g > 0, we don’t know
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Future directions
• Consider O(N2) operators eg. (detZ)N , which are dual to backreacted

geometries

New holomorphic coordinates:

ã1 = a e
− c̄

b
1

|b|2+|c|2 , b ̸= 0

ã2 = a e
b̄
c

1
|b|2+|c|2 , c ̸= 0

with transition:

ã1
ã2

= e
1
bc

detX

detY

• Holographic dual of the holomorphic twist of N = 4 SYM

▶ Proposed to be topological B-model on C5, in the presence of a certain
background field [Costello, Li ’16]

▶ Maybe useful for ”non-multigraviton” cohomology classes?

Thank you!
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ã2

= e
1
bc

detX

detY

• Holographic dual of the holomorphic twist of N = 4 SYM

▶ Proposed to be topological B-model on C5, in the presence of a certain
background field [Costello, Li ’16]

▶ Maybe useful for ”non-multigraviton” cohomology classes?

Thank you!

20 / 20



Future directions
• Consider O(N2) operators eg. (detZ)N , which are dual to backreacted

geometries

New holomorphic coordinates:
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ã1
ã2
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Holographic checks

Correlation function of determinants with a single-trace
[Jiang, Komatsu, Vescovi ’19]:

〈∏
i

D(mi;ui; zi)N TrZn
〉∣∣∣
N→∞

≈ −eNS[ρ
∗] N Trk×k(−ρ

µ− u
ζ − z )

n
∣∣∣
ρ=ρ∗

We can rewrite it to a form∫
Sρ∗

∂−1α,

N TrZn

where α is a Kodaira-Spencer field sourced by N TrZn:

α = ∂
(
(b− ua)nδ c

a
=z + (za− c)−nδ b

a
=u

)
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