Instanton effects on extended strings from $\mathcal{N}=4$ SYM

Silviu S. Pufu, Princeton University

Based on arXiv:2305.08297 with V. Rodriguez and Y. Wang and earlier work with D. Binder, S. Chester, M. Green, Y. Wang, C. Wen

CERN, June 7, 2023

Introduction

- This talk is about QFT calculations in $\mathcal{N}=4$ SYM theory which have string theory interpretations.
- In string theory, we study scattering amplitudes.
- $\mathcal{N}=4$ SYM is a CFT \rightarrow we study correlation functions.
- Last few years: Iots of quantitative precision tests.
- $\mathcal{N}=4$ SYM correlators at large $N \Longrightarrow$ graviton scattering amplitude.
- So far: many impressive checks
- This talk: new string theory scattering amplitudes from CFT.

Introduction

- This talk is about QFT calculations in $\mathcal{N}=4$ SYM theory which have string theory interpretations.
- In string theory, we study scattering amplitudes.
- $\mathcal{N}=4$ SYM is a CFT \rightarrow we study correlation functions.
- Last few years: lots of quantitative precision tests.
- $\mathcal{N}=4$ SYM correlators at large $N \Longrightarrow$ graviton scattering amplitude.
- So far: many impressive checks
- This talk: new string theory scattering amplitudes from CFT.

Introduction

- This talk is about QFT calculations in $\mathcal{N}=4$ SYM theory which have string theory interpretations.
- In string theory, we study scattering amplitudes.
- $\mathcal{N}=4$ SYM is a CFT \rightarrow we study correlation functions.
- Last few years: lots of quantitative precision tests.
- $\mathcal{N}=4$ SYM correlators at large $N \Longrightarrow$ graviton scattering amplitude.
- So far: many impressive checks
- This talk: new string theory scattering amplitudes from CFT.

Introduction

- This talk is about QFT calculations in $\mathcal{N}=4$ SYM theory which have string theory interpretations.
- In string theory, we study scattering amplitudes.
- $\mathcal{N}=4$ SYM is a CFT \rightarrow we study correlation functions.
- Last few years: lots of quantitative precision tests.
- $\mathcal{N}=4$ SYM correlators at large $N \Longrightarrow$ graviton scattering amplitude.
- So far: many impressive checks
- This talk: new string theory scattering amplitudes from CFT.

Introduction

- This talk is about QFT calculations in $\mathcal{N}=4$ SYM theory which have string theory interpretations.
- In string theory, we study scattering amplitudes.
- $\mathcal{N}=4$ SYM is a CFT \rightarrow we study correlation functions.
- Last few years: lots of quantitative precision tests.
- $\mathcal{N}=4$ SYM correlators at large $N \Longrightarrow$ graviton scattering amplitude.
- So far: many impressive checks
- This talk: new string theory scattering amplitudes from CFT.

Introduction

What's new?

- Integrated correlator of 2 local ops and a Wilson (or 't Hooft or Wilson-'t Hooft) line \mathbb{W}

$$
\int d^{4} x d^{4} y \mu(\vec{x}, \vec{y})\langle\mathcal{O}(\vec{x}) \mathcal{O}(\vec{y}) \mathbb{W}\rangle
$$

in $\mathcal{N}=4$ SYM in "very strong coupling" limit.

- Implications for scattering of gravitons from long strings.

Plan:

- First, context: Review of older work on 4-pt integrated correlator in $\mathcal{N}=4$ SYM and relation to 4-pt scattering amplitudes
- Then: 2-pt integrated correlator in presence of Wilson loop and interpretation

Introduction

What's new?

- Integrated correlator of 2 local ops and a Wilson (or 't Hooft or Wilson-'t Hooft) line \mathbb{W}

$$
\int d^{4} x d^{4} y \mu(\vec{x}, \vec{y})\langle\mathcal{O}(\vec{x}) \mathcal{O}(\vec{y}) \mathbb{W}\rangle
$$

in $\mathcal{N}=4$ SYM in "very strong coupling" limit.

- Implications for scattering of gravitons from long strings.

Plan:

- First, context: Review of older work on 4-pt integrated correlator in $\mathcal{N}=4$ SYM and relation to 4-pt scattering amplitudes
- Then: 2-pt integrated correlator in presence of Wilson loop and interpretation

Graviton scattering in 10d type IIB string theory

- $2 \rightarrow 2$ scattering of gravitons + superpartners

$$
\text { SUSY } \Longrightarrow \mathcal{A}_{2 \rightarrow 2}=\underbrace{\delta^{16}(Q)}_{\text {polarizations }} f(\mathbf{s}, \mathbf{t})
$$

(where \mathbf{s} and \mathbf{t} (and $\mathbf{u}=-\mathbf{s}-\mathbf{t}$) are Mandelstam invariants) is captured by the 10d effective action:

$$
\begin{aligned}
S_{10 \mathrm{~d}} & =\int d^{10} x \sqrt{g}\left[R+\ell_{s}^{6} R^{4}+\ell_{s}^{10} D^{4} R^{4}+\ell_{s}^{12} D^{6} R^{4}+\cdots\right] \\
& + \text { (SUSic completion) }
\end{aligned}
$$

- String theory has parameters: and $\chi=\left\langle C_{0}\right\rangle$. Denote $\tau=\chi+i / g_{s}$.
- $f(\mathbf{s}, \mathbf{t})$ is known in various limits:
- 3 lowest orders in g_{s}^{2} at all orders in $\ell_{s} \times$ momentum.
- 4 lowest orders in $\ell_{s} \times$ momentum at all orders in g_{s} and

Graviton scattering in 10d type IIB string theory

- $2 \rightarrow 2$ scattering of gravitons + superpartners

$$
\text { SUSY } \Longrightarrow \mathcal{A}_{2 \rightarrow 2}=\underbrace{\delta^{16}(Q)}_{\text {polarizations }} f(\mathbf{s}, \mathbf{t})
$$

(where \mathbf{s} and \mathbf{t} (and $\mathbf{u}=-\mathbf{s}-\mathbf{t}$) are Mandelstam invariants) is captured by the 10d effective action:

$$
\begin{aligned}
S_{10 \mathrm{~d}} & =\int d^{10} x \sqrt{g}\left[R+\ell_{s}^{6} R^{4}+\ell_{s}^{10} D^{4} R^{4}+\ell_{s}^{12} D^{6} R^{4}+\cdots\right] \\
& + \text { (SUSic completion) }
\end{aligned}
$$

- String theory has parameters: $\alpha^{\prime}=\ell_{s}^{2}$, string coupling $g_{s}=\left\langle e^{-\phi}\right\rangle$, and $\chi=\left\langle C_{0}\right\rangle$. Denote $\tau=\chi+i / g_{s}$.
- $f(\mathbf{s}, \mathbf{t})$ is known in various limits:
- 3 lowest orders in g_{s}^{2} at all orders in $\ell_{s} \times$ momentum.
- 4 lowest orders in $\ell_{s} \times$ momentum at all orders in g_{s} and χ.

Graviton scattering at tree level

- At leading order in string coupling g_{s}, i.e. tree level (see Polchinski (12.4.30)):

$$
f(\mathbf{s}, \mathbf{t}) \sim \frac{\Gamma\left(-\frac{1}{4} \alpha^{\prime} \mathbf{s}\right) \Gamma\left(-\frac{1}{4} \alpha^{\prime} \mathbf{t}\right) \Gamma\left(-\frac{1}{4} \alpha^{\prime} \mathbf{u}\right)}{\Gamma\left(1+\frac{1}{4} \alpha^{\prime} \mathbf{s}\right) \Gamma\left(1+\frac{1}{4} \alpha^{\prime} \mathbf{t}\right) \Gamma\left(1+\frac{1}{4} \alpha^{\prime} \mathbf{u}\right)}+O\left(g_{s}^{2}\right)
$$

- Further expansion at small momentum gives interpretation in terms of diagrams:

Small momentum expansion

- Small momentum at fixed $\tau=\chi+i / g_{s}$ [Green, Gutperle, Vanhove, Sethi; Wang, Yin '15]:
$f(\mathbf{s}, \mathbf{t})=\underbrace{\frac{1}{\mathbf{s t u}}}_{\text {SG tree }}+\underbrace{\ell_{s}^{6} \frac{g_{s}^{\frac{3}{2}}}{64} E\left(\frac{3}{2}, \tau, \bar{\tau}\right)}_{R^{4}}+\underbrace{\ell_{s}^{8} g_{s}^{2} f_{R \mid R}(\mathbf{s}, \mathbf{t})}_{\text {SG one-loop }}$ $+\underbrace{\ell_{s}^{10} \frac{\mathbf{s}^{2}+\mathbf{t}^{2}+\mathbf{u}^{2}}{2^{11}} g_{s}^{\frac{5}{2}} E\left(\frac{5}{2}, \tau, \bar{\tau}\right)}_{D^{4} R^{4}}+\underbrace{\ell_{s}^{12} \frac{\mathbf{s t u}}{2^{12}} g_{s}^{3} \mathcal{E}\left(3, \frac{3}{2}, \frac{3}{2}, \tau, \bar{\tau}\right)}_{D^{6} R^{4}}+\cdots$.

Eisenstein series

- The Eisenstein series are modular invariants defined by

$$
E(s, \tau, \bar{\tau})=\sum_{(m, n) \neq(0,0)} \frac{\tau_{2}^{s}}{|m+n \tau|^{2 s}}, \quad \tau \equiv \tau_{1}+i \tau_{2}
$$

- For example,

$$
E\left(\frac{3}{2}, \tau, \bar{\tau}\right)=\frac{2 \zeta(3)}{g_{s}^{\frac{3}{2}}}+\frac{2 \pi^{2}}{3} g_{s}^{\frac{1}{2}}+\frac{8 \pi}{\sqrt{g_{s}}} \sum_{k=1}^{\infty} \frac{\sigma_{-2}(k)}{k} K_{1}\left(\frac{2 \pi k}{g_{s}}\right) \cos (2 \pi k \chi)
$$

where $\sigma_{p}(k)=\sum_{d \mid k} d^{p}$.

- The last term is non-perturbative in g_{s} :

$$
\begin{aligned}
g_{s}^{\frac{3}{2}} E\left(\frac{3}{2}, \tau, \bar{\tau}\right) & =2 \zeta(3)+\frac{2 \pi^{2}}{3} g_{s}^{2}+e^{-\frac{2 \pi}{g_{s}}} \cos (2 \pi \chi)\left[4 \pi g_{s}^{\frac{3}{2}}+\frac{3}{4} g_{s}^{\frac{5}{2}}+\cdots\right] \\
& +e^{-\frac{4 \pi}{g_{s}}} \cos (4 \pi \chi)[\cdots]+\cdots
\end{aligned}
$$

$\mathcal{N}=4$ SYM correlators

- $\mathcal{N}=4$ SYM: vector field $A_{\mu}+$ scalars $X_{I}(I=1, \ldots, 6)+$ fermions in adjoint of $S U(N)$, w/ gauge coupling

$$
\tau=\frac{\theta}{2 \pi}+\frac{4 \pi i}{g^{2}}, \quad \lambda=g^{2} N
$$

- Limits:

- Operator

has $\Delta=2$ and is $\frac{1}{2}$-BPS. Same multiplet as stress tensor.

$\mathcal{N}=4$ SYM correlators

- $\mathcal{N}=4$ SYM: vector field $A_{\mu}+$ scalars $X_{I}(I=1, \ldots, 6)+$ fermions in adjoint of $S U(N)$, w/ gauge coupling

$$
\tau=\frac{\theta}{2 \pi}+\frac{4 \pi i}{g^{2}}, \quad \lambda=g^{2} N
$$

- Limits:
- 't Hooft strong coupling: N large w/ λ fixed, then λ large (In this limit, $g \rightarrow 0$)
- "very strong coupling": N large with τ fixed
- Dual: IIB strings on $A d S_{5} \times S^{5}$, with $\frac{L}{\ell_{s}}=\lambda^{1 / 4}, g_{s}=\frac{g^{2}}{4 \pi}, \chi=\frac{\theta}{2 \pi}$.
- Operator

has $\Delta=2$ and is $\frac{1}{2}$-BPS. Same multiplet as stress tensor.

$\mathcal{N}=4$ SYM correlators

- $\mathcal{N}=4$ SYM: vector field $A_{\mu}+$ scalars $X_{I}(I=1, \ldots, 6)+$ fermions in adjoint of $S U(N)$, w/ gauge coupling

$$
\tau=\frac{\theta}{2 \pi}+\frac{4 \pi i}{g^{2}}, \quad \lambda=g^{2} N
$$

- Limits:
- 't Hooft strong coupling: N large w/ λ fixed, then λ large (In this limit, $g \rightarrow 0$)
- "very strong coupling": N large with τ fixed
- Dual: IIB strings on $A d S_{5} \times S^{5}$, with $\frac{L}{\ell_{s}}=\lambda^{1 / 4}, g_{s}=\frac{g^{2}}{4 \pi}, \chi=\frac{\theta}{2 \pi}$.
- Operator

has $\Delta=2$ and is $\frac{1}{2}$-BPS. Same multiplet as stress tensor.

$\mathcal{N}=4$ SYM correlators

- $\mathcal{N}=4$ SYM: vector field $A_{\mu}+$ scalars $X_{I}(I=1, \ldots, 6)+$ fermions in adjoint of $S U(N)$, w/ gauge coupling

$$
\tau=\frac{\theta}{2 \pi}+\frac{4 \pi i}{g^{2}}, \quad \lambda=g^{2} N
$$

- Limits:
- 't Hooft strong coupling: N large w/ λ fixed, then λ large (In this limit, $g \rightarrow 0$)
- "very strong coupling": N large with τ fixed
- Dual: IIB strings on $\operatorname{AdS}_{5} \times S^{5}$, with $\frac{L}{\ell_{s}}=\lambda^{1 / 4}, g_{s}=\frac{g^{2}}{4 \pi}, \chi=\frac{\theta}{2 \pi}$.
- Operator

$$
\mathcal{O}_{I J}=\operatorname{tr}\left(X_{I} X_{J}-\frac{\delta_{I J}}{6} X_{K} X_{K}\right)
$$

has $\Delta=2$ and is $\frac{1}{2}$-BPS. Same multiplet as stress tensor.
AdS/CFT $\Longrightarrow \mathcal{O} \longleftrightarrow$ (metric + 4-form) fluctuations

Relation b/w SYM correlator and graviton scattering

- SUSY $\Longrightarrow\langle\mathcal{O O O O}\rangle$ is expressed in terms of a single function \mathcal{T} :

$$
\langle\mathcal{O O O O}\rangle=(\text { free part })+(\text { prefactor }) \mathcal{T}(U, V ; \tau, \bar{\tau})
$$

where, with $\vec{x}_{i j}=\vec{x}_{i}-\vec{x}_{j}$,

$$
U=\frac{\vec{x}_{12}^{2} \vec{x}_{34}^{2}}{\vec{x}_{13}^{2} \vec{x}_{24}^{2}}, \quad V=\frac{\vec{x}_{14}^{2} \vec{x}_{23}^{2}}{\vec{x}_{13}^{2} \vec{x}_{24}^{2}}
$$

Relation b/w SYM correlator and graviton scattering

- Mellin space (with $u=4-s-t$):
$\mathcal{T}(U, V)=\int_{c-i \infty}^{c+i \infty} \frac{d s d t}{(4 \pi i)^{2}} \mathcal{M}(s, t) U^{\frac{s}{2}} V^{\frac{u}{2}-2} \Gamma\left(\frac{4-s}{2}\right)^{2} \Gamma\left(\frac{4-t}{2}\right)^{2} \Gamma\left(\frac{4-u}{2}\right)^{2}$
- $\mathcal{M}(s, t)$ is the AdS analog of the scattering amplitude $f(\mathbf{s}, \mathbf{t})$.
- $N \rightarrow \infty, \tau$ fixed: $f(\mathbf{s}, \mathbf{t})$ extracted from large s, t limit of $\mathcal{M}(s, t)$ [Giddings '99; Polchinski '99; Susskind '99; Penedones '10; Fitzpatrick, Kaplan '11]

Relation b/w SYM correlator and graviton scattering

Integrated correlators (can be computed using SUSic localization)
[Binder, Chester, SSP, Wang '19; Chester, SSP '20]:

$$
\begin{aligned}
\left.(\operatorname{lm} \tau)^{2} \partial_{\tau} \partial_{\bar{\tau}} \partial_{m}^{2} \log Z_{S^{4}}\right|_{\substack{m=0 \\
b=1}} & =\int d U d V \mu_{1}(U, V) \mathcal{T}(U, V), \\
\left.\partial_{m}^{4} \log Z_{S^{4}}\right|_{\substack{m=0 \\
b=1}} & =(\text { free part })+\int d U d V \mu_{2}(U, V) \mathcal{T}(U, V) .
\end{aligned}
$$

where μ_{1} and μ_{2} are SUSY-preserving measures.

Relation b/w SYM correlator and graviton scattering

Analytic bootstrap:

- At each order in deriv expansion, $\mathcal{M}(s, t)$ is determined by analyticity + crossing + SUSY up to a few constants
- 2 constants at each order can be fixed using the derivs of $Z_{S^{4}}$.
- Can (re)derive low-energy expansion of $f(\mathbf{s}, \mathbf{t})$ from $\mathcal{N}=4$ SYM!
at low orders in derivative expansion. (E.g. the Eisenstein series!!)

Relation b/w SYM correlator and graviton scattering

Analytic bootstrap:

- At each order in deriv expansion, $\mathcal{M}(s, t)$ is determined by analyticity + crossing + SUSY up to a few constants
- 2 constants at each order can be fixed using the derivs of $Z_{S^{4}}$.
- Can (re)derive low-energy expansion of $f(\mathbf{s}, \mathbf{t})$ from $\mathcal{N}=4$ SYM!

Take-away: Same fns of $(\tau, \bar{\tau})$ appear in derivs of $\log Z_{S^{4}}$ and in $f(\mathbf{s}, \mathbf{t})$ at low orders in derivative expansion. (E.g. the Eisenstein series!!)

How do we see the Eisenstein series from $Z_{S^{4}}$?

- [Pestun '07]: S^{4} partition fn of $\mathcal{N}=2^{*}$ theory (i.e. $\mathcal{N}=4$ SYM deformed by an $\mathcal{N}=2$-preserving mass m for the adj hyper)

$$
Z_{S^{4}}=\int d^{N-1} a \prod_{i<j}\left(a_{i}-a_{j}\right)^{2} e^{-\frac{8 \pi^{2}}{g^{2}} \sum_{i} a_{i}^{2}} Z_{\text {pert }}\left(a_{i}, m\right)\left|Z_{\text {inst }}\left(a_{i}, \tau, m\right)\right|^{2}
$$

- $Z_{\text {pert }}$ comes from perturbative contirbution

$$
Z_{\text {pert }}\left(a_{i}, m\right)=\frac{H^{2}\left(a_{i}-a_{j}\right)}{H(m)^{N-1} \prod_{i \neq j} H\left(a_{i}-a_{j}+m\right)}
$$

where $H(x)=e^{-(1+\gamma) x^{2}} G(1+i x) G(1-i x)$.

- $Z_{\text {inst }}$ comes from instantons at the poles of S^{4} and is complicated: sum of N-tuples of Young diagrams that represent contour integrals [Nekrasov '02; Nekrasov, Okounkov '03]
- For $\left.\partial_{m}^{2} \log Z_{S^{4}}\right|_{m=0}$ only rectangular Young diagrams contribute!

How do we see the Eisenstein series from $Z_{S^{4}}$?

- Compute
$\left.\partial_{m}^{2} \log Z_{S^{4}}\right|_{m=0}=\left\langle Z_{\text {pert }}^{\prime \prime}\left(a_{i}, 0\right)\right\rangle_{G M M}+\left\langle Z_{\text {inst }}^{\prime \prime}\left(a_{i}, \tau, 0\right)\right\rangle_{G M M}+\left\langle\bar{Z}_{\text {inst }}^{\prime \prime}\left(a_{i}, \bar{\tau}, 0\right)\right\rangle_{G M N}$
by writing each term as an expectation value in the Gaussian matrix model.
to systematically evaluate each term
- Expand in very strong coupling limit (large N, fixed τ) [

(Recall $\frac{L}{\ell_{s}}=\lambda^{1 / 4}=g^{1 / 2} N^{1 / 4}$, so k derivs $\sim N^{-k / 4}$.)

How do we see the Eisenstein series from $Z_{S^{4}}$?

- Compute
$\left.\partial_{m}^{2} \log Z_{S^{4}}\right|_{m=0}=\left\langle Z_{\text {pert }}^{\prime \prime}\left(a_{i}, 0\right)\right\rangle_{G M M}+\left\langle Z_{\text {inst }}^{\prime \prime}\left(a_{i}, \tau, 0\right)\right\rangle_{G M M}+\left\langle\bar{Z}_{\text {inst }}^{\prime \prime}\left(a_{i}, \bar{\tau}, 0\right)\right\rangle_{G M N}$
by writing each term as an expectation value in the Gaussian matrix model. Use resolvents \& topological recursion \& Mellin transforms to systematically evaluate each term [Chester, Green, SSP, Wang, Wen '19, '20; SSP, Rodriguez, Wang '23] .
- Expand in very strong coupling limit (large \mathbf{N}, fixed τ)

(Recall $\frac{L}{\ell_{c}}=\lambda^{1 / 4}=g^{1 / 2} N^{1 / 4}$ 4, so k derivs $\left.N^{-k / 4}.\right)$

How do we see the Eisenstein series from $Z_{S^{4}}$?

- Compute
$\left.\partial_{m}^{2} \log Z_{S^{4}}\right|_{m=0}=\left\langle Z_{\text {pert }}^{\prime \prime}\left(a_{i}, 0\right)\right\rangle_{G M M}+\left\langle Z_{\text {inst }}^{\prime \prime}\left(a_{i}, \tau, 0\right)\right\rangle_{G M M}+\left\langle\bar{Z}_{\text {inst }}^{\prime \prime}\left(a_{i}, \bar{\tau}, 0\right)\right\rangle_{G M N}$
by writing each term as an expectation value in the Gaussian matrix model. Use resolvents \& topological recursion \& Mellin
transforms to systematically evaluate each term [Chester, Green, SSP,
Wang, Wen '19, '20; SSP, Rodriguez, Wang '23].
- Expand in very strong coupling limit (large N, fixed τ) [Chester, Green, SSP, Wang, Wen '19, '20; Dorigoni, Green, Wen '21]:
(Recall $\frac{L}{\ell_{s}}=\lambda^{1 / 4}=g^{1 / 2} N^{1 / 4}$, so k derivs $\left.\sim N^{-k / 4}.\right)$

A defect CFT \longleftrightarrow open-closed string system example

- So far: CFT 4-pt function $\longleftrightarrow 2 \rightarrow 2$ scattering of closed strings
- For the rest of talk, another setup: open-closed amplitudes in type IIB string theory.
- $1 \rightarrow 1$ scattering of a graviton from a 1/2-BPS extended string (long fundamental string, D1-brane, or (p, q)-string)

\square

A defect CFT \longleftrightarrow open-closed string system example

- So far: CFT 4-pt function $\longleftrightarrow 2 \rightarrow 2$ scattering of closed strings
- For the rest of talk, another setup: open-closed amplitudes in type IIB string theory.
- $1 \rightarrow 1$ scattering of a graviton from a $1 / 2$-BPS extended string (long fundamental string, D1-brane, or (p, q)-string)

SUSY $\Longrightarrow \mathcal{A}_{1 \rightarrow 1}=\underbrace{\delta^{8}\left(Q^{\|}\right)}_{\text {polarizations }} f_{\mathbb{L}}(\mathbf{s}, \mathbf{t})$

$$
\mathbf{s}=2 p_{1 \|}^{2}=2 p_{2 \|}^{2}, \quad \mathbf{t}=p_{1} \cdot p_{2}
$$

- Setup is not $S L(2, \mathbb{Z})$ invariant. Under $\tau \rightarrow \frac{a \tau+b}{c \tau+d}$, we have

$$
\left(\begin{array}{ll}
p & q
\end{array}\right) \rightarrow\left(\begin{array}{ll}
p & q
\end{array}\right)\left(\begin{array}{cc}
a & -c \\
-b & d
\end{array}\right)
$$

What's known

- Much less is known about this setup. Schematically:

$$
S=S_{10 \mathrm{~d}}+\int d^{2} x \sqrt{-g}\left[\mathrm{DBI}+R^{2}+D^{2} R^{2}+D^{4} R^{2}+\cdots\right]
$$

$R=$ ambient space-time curvature, $D=$ tangential deriv.

- Amplitude known only at leading order in g_{s} (disk diagram) for D1-brane and ($n, 1$) string. For D1-brane [Garousi-Myers '96; Hashimoto, Klebanov '96; Basu '08] :
$f_{\mathbb{L}} \propto \frac{\ell_{s}^{4} \Gamma\left(\frac{\alpha^{\prime} \mathbf{s}}{2}\right) \Gamma\left(\frac{\alpha^{\prime} \mathbf{t}}{2}\right)}{\Gamma\left(1+\frac{\alpha^{\prime}(\mathbf{s}+\mathbf{t})}{2}\right)}+O\left(g_{s}\right)=\underbrace{\frac{4}{\mathbf{s t}}}_{\text {SG+DBI }}-\underbrace{\frac{\pi^{2}}{6} \ell_{s}^{4}}_{R^{2}}+\underbrace{\frac{1}{2}(\mathbf{s}+\mathbf{t}) \zeta(3) \ell_{s}^{6}}_{D^{2} R^{2}}+\cdots+O\left(g_{s}\right)$
- $O\left(g_{s}\right)$ not fully understood-annulus diagram diverges!
- Small momentum, all orders in g_{s} : Coeffs of $R^{2}, D^{2} R^{2}, D^{4} R^{2}$, etc. should be fns of $(\tau, \bar{\tau})$. NOT modular invariant and not known.

Extended string \longleftrightarrow CFT defect

- $\mathcal{N}=4$ SYM: two-pt function of \mathcal{O} in presence of 1/2-BPS line defect (Wilson line, 't Hooft line, (p, q) Wilson-'t Hooft dyonic line) [Barrat, Liendo, Plefka '20]

SUSY $\quad \Longrightarrow \quad\langle\mathcal{O O L}\rangle=($ prefactor $) \mathcal{T}_{\mathbb{L}}(U, V)$

$$
U=\frac{x_{1}^{\perp} \cdot x_{2}^{\perp}}{\left|x_{1}^{\perp}\right|\left|x_{2}^{\perp}\right|}, \quad V=\frac{\left(\vec{x}_{1}-\vec{x}_{2}\right)^{2}}{\left|x_{1}^{\perp}\right|\left|x_{2}^{\perp}\right|}
$$

- Simplest case: Wilson loop $\mathbb{L}=\mathbb{W}$ in fundamental representation:

- On S^{4}, can compute

using localization. (Insert $\sum_{i} e^{2 \pi a_{i}}$ in matrix model.)

Extended string \longleftrightarrow CFT defect

- $\mathcal{N}=4$ SYM: two-pt function of \mathcal{O} in presence of 1/2-BPS line defect (Wilson line, 't Hooft line, (p, q) Wilson-'t Hooft dyonic line) [Barrat, Liendo, Plefka '20]

SUSY $\quad \Longrightarrow \quad\langle\mathcal{O O L}\rangle=$ (prefactor) $\mathcal{T}_{\mathbb{L}}(U, V)$

$$
U=\frac{x_{1}^{\perp} \cdot x_{2}^{\perp}}{\left|x_{1}^{\perp}\right|\left|x_{2}^{\perp}\right|}, \quad V=\frac{\left(\vec{x}_{1}-\vec{x}_{2}\right)^{2}}{\left|x_{1}^{\perp}\right|\left|x_{2}^{\perp}\right|}
$$

- Simplest case: Wilson loop $\mathbb{L}=\mathbb{W}$ in fundamental representation:

$$
\mathbb{W}=\operatorname{tr}_{\text {fund }} P \exp \left[i \oint d s\left(A_{\mu}(x(s)) \dot{x}^{\mu}(s)+X_{6}(x(s))|\dot{x}(s)|\right)\right]
$$

- On S^{4}, can compute

$$
\mathcal{I}_{\mathbb{W}}=\left.\partial_{m}^{2} \log \langle\mathbb{W}\rangle\right|_{m=0}=\text { integrated }\langle\mathcal{O} \mathcal{O} \mathbb{W}\rangle
$$

using localization. (Insert $\sum_{i} e^{2 \pi a_{i}}$ in matrix model.)

- $S L(2, \mathbb{Z})$ relates amplitudes $\langle\mathcal{O} \mathcal{O}\rangle$ to $\langle\mathcal{O} \mathcal{L}\rangle$ with coprime (p, q).

Scattering from extended string from CFT

Expect similar connections, but more conjectural in this case:

Expect:

Same fns of $(\tau, \bar{\tau})$ appear in derivs of $\left.\partial_{m}^{2} \log (\mathbb{L}\rangle\right|_{m=0}$ and in $f_{\mathbb{L}}(\mathbf{s}, \mathbf{t})$ at low orders in the derivative expansion.

Two-point function in presence of Wilson loop

- For line operator \mathbb{L}, expand

$$
\left.\partial_{m}^{2} \log \langle\mathbb{L}\rangle\right|_{m=0}=\mathcal{I}_{\mathbb{L},-1 / 2} \sqrt{N}+\mathcal{I}_{\mathbb{L}, 0}+\frac{\mathcal{I}_{\mathbb{L}, 1 / 2}}{\sqrt{N}}+\frac{\mathcal{I}_{\mathbb{L}, 1}}{N}+\frac{\mathcal{I}_{\mathbb{L}, 3 / 2}}{N^{3 / 2}}+\cdots
$$

- For $\mathbb{L}=\mathbb{W}$ (Wilson loop), matrix model gives [SSP, Rodriguez, Wang '23]:

$$
\begin{aligned}
\mathcal{I}_{\mathbb{W},-1 / 2} & =g \\
\mathcal{I}_{\mathbb{W}, 0} & =\frac{1}{2}-\frac{\pi^{2}}{3}, \\
\mathcal{I}_{\mathbb{W}, 1 / 2} & =\frac{3}{8 g}-\frac{g^{3}}{32}, \\
\mathcal{I}_{\mathbb{W}, 1} & =\frac{3(1+4 \zeta(3))}{8 g^{2}}+\frac{g^{6}}{11520}-\frac{3 g^{2}}{2 \pi^{2}} \sum_{k=1}^{\infty} \cos (k \theta) K_{2}\left(8 \pi^{2} k / g^{2}\right) \sigma_{-2}(k), \\
\mathcal{I}_{\mathbb{W}, 3 / 2} & =\frac{3(21+64 \zeta(3))}{128 g^{3}}-\frac{g}{256}+\frac{7 g^{5}}{10240}-\frac{g^{9}}{1935360}+\text { (non-pert) }
\end{aligned}
$$

- We determined $\mathcal{I}_{\mathbb{W}, k}(\tau, \bar{\tau})$ for $k \leq 3 / 2$. NOT modular invariant.

Two-point function in presence of 't Hooft loop

- $S L(2, \mathbb{Z})$ duality relates \mathbb{W} to \mathbb{L} for Wilson-'t Hooft loops (p, q)-strings.
- For example, S-duality when $\theta=0$ gives for the 't Hooft loop \mathbb{T} :

$$
\begin{aligned}
\mathcal{I}_{\mathbb{T},-1 / 2} & =\frac{4 \pi}{g} \\
\mathcal{I}_{\mathbb{T}, 0} & =\frac{1}{2}-\frac{\pi^{2}}{3} \\
\mathcal{I}_{\mathbb{T}, 1 / 2} & =\frac{-\frac{8 \pi^{4}}{g^{3}}+\frac{3}{8} g}{4 \pi} \\
\mathcal{I}_{\mathbb{T}, 1} & =\frac{24 \pi \zeta(3)}{g^{4}}-\frac{\pi^{2}}{g^{2}}+\frac{\pi}{6}+\frac{3 g^{2}}{128 \pi^{2}}+\frac{3 g}{2 \pi^{\frac{3}{2}}} e^{-\frac{8 \pi^{2}}{g^{2}}}\left(1-\frac{25 g^{2}}{64 \pi^{2}}+\mathcal{O}\left(g^{4}\right)\right) \\
& +\mathcal{O}\left(e^{-\frac{16 \pi^{2}}{g^{2}}}\right)
\end{aligned}
$$

Two-point function in presence of 't Hooft loop

- $S L(2, \mathbb{Z})$ duality relates \mathbb{W} to \mathbb{L} for Wilson-'t Hooft loops (p, q)-strings.
- For example, S-duality when $\theta=0$ gives for the 't Hooft loop \mathbb{T} :

$$
\begin{aligned}
\mathcal{I}_{\mathbb{T},-1 / 2} & =\frac{4 \pi}{g} \\
\mathcal{I}_{\mathbb{T}, 0} & =\frac{1}{2}-\frac{\pi^{2}}{3} \\
\mathcal{I}_{\mathbb{T}, 1 / 2} & =\frac{-\frac{8 \pi^{4}}{g^{3}}+\frac{3}{8} g}{4 \pi}, \\
\mathcal{I}_{\mathbb{T}, 1} & =\frac{24 \pi \zeta(3)}{g^{4}}-\frac{\pi^{2}}{g^{2}}+\frac{\pi}{6}+\frac{3 g^{2}}{128 \pi^{2}}+\frac{3 g}{2 \pi^{\frac{3}{2}}} e^{-\frac{8 \pi^{2}}{g^{2}}}\left(1-\frac{25 g^{2}}{64 \pi^{2}}+\mathcal{O}\left(g^{4}\right)\right) \\
& +\mathcal{O}\left(e^{-\frac{16 \pi^{2}}{g^{2}}}\right)
\end{aligned}
$$

- Finite number of perturbative terms + infinite number of non-perturbative corrections for both \mathbb{W} and \mathbb{T} !

String theory interpretation

- At each order, tree level diagrams + loop diagrams:

$$
\underbrace{\mathcal{I}_{\mathbb{L},-1 / 2} \sqrt{N}}_{\text {tree }}+\underbrace{\mathcal{I}_{\mathbb{L}, 0}}_{1 \text {-loop }}+\underbrace{\frac{\mathcal{I}_{\mathbb{L}, 1 / 2}}{\sqrt{N}}}_{\substack{R^{2}, 2 \text {-loop }}}+\underbrace{\frac{\mathcal{I}_{\mathbb{L}, 1}}{N}}_{\begin{array}{c}
D^{2} R^{2}, \\
\text { 3-loop, } \\
\text { bulk contact }
\end{array}}+\cdots
$$

- Some examples of diagrams are:

- At each order in $1 / \sqrt{N}$, the contact and loop diagrams can be distinguished by their $(\tau, \bar{\tau})$ dependence!

Conjecture for graviton scattering amplitude

- Let me make a conjecture for $\mathbb{L}=\mathbb{W}$ (Wilson loop) fundamental string
- Bulk effective action is Nambu-Goto $+R^{2}+D^{2} R^{2}+D^{4} R^{2}+\cdots$, but better to think about it in terms of scattering amplitude.
- Scattering amplitude $\mathcal{A}_{1 \rightarrow 1}=($ prefactor $) f_{\mathbb{W}}(\mathbf{s}, \mathbf{t})$, where:

$$
\begin{aligned}
f_{\mathrm{W}}(\mathbf{s}, \mathbf{t}) & =\frac{1}{\mathbf{s t}}+\ell_{s}^{2} f_{1-\operatorname{loop}}(\mathbf{s}, \mathbf{t})+\ell_{s}^{4}(f_{2 \text {-loop }}(\mathbf{s}, \mathbf{t})+\underbrace{c_{1} g_{s}^{2}}_{R^{2}}) \\
& +\ell_{s}^{6}(f_{3 \text {-loop }}(\mathbf{s}, \mathbf{t})+g_{s}^{2} f_{\text {bulk contact }}(\mathbf{s}, \mathbf{t})+\underbrace{c_{2} g_{s} \mathcal{I}_{\mathbb{W}, 1}(\tau, \bar{\tau})(\mathbf{s}+\mathbf{t})}_{D^{2} R^{2}})+\cdots
\end{aligned}
$$

Conjecture for graviton scattering amplitude

- Let me make a conjecture for $\mathbb{L}=\mathbb{W}($ Wilson loop $) \longleftrightarrow$ fundamental string
- Bulk effective action is Nambu-Goto $+R^{2}+D^{2} R^{2}+D^{4} R^{2}+\cdots$, but better to think about it in terms of scattering amplitude.
- Scattering amplitude $\mathcal{A}_{1 \rightarrow 1}=($ prefactor $) f_{\mathbb{W}}(\mathbf{s}, \mathbf{t})$, where:

$$
\begin{aligned}
f_{\mathrm{W}}(\mathbf{s}, \mathbf{t}) & =\frac{1}{\mathbf{s t}}+\ell_{s}^{2} f_{1-\operatorname{loop}}(\mathbf{s}, \mathbf{t})+\ell_{s}^{4}(f_{2-\operatorname{loop}}(\mathbf{s}, \mathbf{t})+\underbrace{c_{1} g_{s}^{2}}_{R^{2}}) \\
& +\ell_{s}^{6}(f_{3 \text {-loop }}(\mathbf{s}, \mathbf{t})+g_{s}^{2} f_{\text {bulk contact }}(\mathbf{s}, \mathbf{t})+\underbrace{c_{2} g_{s} \mathcal{I}_{\mathbb{W}, 1}(\tau, \bar{\tau})(\mathbf{s}+\mathbf{t})}_{D^{2} R^{2}})+\cdots
\end{aligned}
$$

- Apply $S L(2, \mathbb{Z})$ to this formula \Longrightarrow scattering from (p, q) strings.

Conjecture for graviton scattering amplitude

- D1-brane at $\chi=0: \mathcal{A}_{1 \rightarrow 1}=($ prefactor $) f_{\mathbb{T}}(\mathbf{s}, \mathbf{t})$, where:

$$
\begin{aligned}
f_{\mathbb{T}}(\mathbf{s}, \mathbf{t}) & =\frac{1}{\mathbf{s t}}+\ell_{s}^{2} g_{s} f_{1-\operatorname{loop}}(\mathbf{s}, \mathbf{t})+\ell_{s}^{4}(g_{s}^{2} f_{2-\operatorname{loop}}(\mathbf{s}, \mathbf{t})+\underbrace{c_{1}}_{R^{2}}) \\
& +\ell_{s}^{6}(g_{s}^{3} f_{3-\operatorname{loop}}(\mathbf{s}, \mathbf{t})+g_{s} f_{\text {bulk contact }}(\mathbf{s}, \mathbf{t})+\underbrace{c_{2} g_{s}^{2} \mathcal{I}_{\mathbb{T}, 1}(\mathbf{s}+\mathbf{t})}_{D^{2} R^{2}})+\cdots
\end{aligned}
$$

where

$$
\begin{aligned}
g_{s}^{2} \mathcal{I}_{\mathbb{T}, 1} & =\frac{3 \zeta(3)}{2 \pi}-\frac{\pi g_{s}}{4}+\frac{\pi g_{s}^{2}}{6}+\frac{3 g_{s}^{3}}{32 \pi}+\frac{3 g_{s}^{3}}{\pi} e^{-\frac{2 \pi}{g_{s}}}\left(1-\frac{25 g_{s}}{16 \pi}+\mathcal{O}\left(g_{s}^{2}\right)\right) \\
& +\mathcal{O}\left(e^{-\frac{4 \pi}{g_{s}}}\right)
\end{aligned}
$$

- ζ (3) matches disk amplitude [Hashimoto, Klebanov '96; Basu '08] .

Conclusion

- We determined new functions of $(\tau, \bar{\tau})$ that appear in the effective actions at orders $D^{2} R^{2}$ and $D^{4} R^{2}$ on extended (p, q)-strings.

Didn't talk about:

- Actual computations using matrix model

For the future:

- Make connections precise between two-pt function in presence of line defect and graviton scattering from a long string.
- Generalization to Wilson loops in other irreps \rightarrow effective action on D3- and D5-branes.

Conclusion

- We determined new functions of $(\tau, \bar{\tau})$ that appear in the effective actions at orders $D^{2} R^{2}$ and $D^{4} R^{2}$ on extended (p, q)-strings.

Didn't talk about:

- Actual computations using matrix model

For the future:

- Make connections precise between two-pt function in presence of line defect and graviton scattering from a long string.
- Generalization to Wilson loops in other irreps \rightarrow effective action on D3- and D5-branes.

Conclusion

- We determined new functions of $(\tau, \bar{\tau})$ that appear in the effective actions at orders $D^{2} R^{2}$ and $D^{4} R^{2}$ on extended (p, q)-strings.

Didn't talk about:

- Actual computations using matrix model

For the future:

- Make connections precise between two-pt function in presence of line defect and graviton scattering from a long string.
- Generalization to Wilson loops in other irreps \rightarrow effective action on D3- and D5-branes.

