Black hole cohomologies in $\mathcal{N}=4$ SYM

Seok Kim

(Seoul National University)

Precision Holography
CERN
June 8, 2023

Talk based on collaborations with

- Sunjin Choi (KIAS)
- Eunwoo Lee (Seoul National Univ.)
- Siyul Lee (Univ. of Michigan)
- Jaemo Park (Postech)
"The shape of non-graviton operators for SU(2)" arXiv:2209.12696.
"Towards quantum black hole microstates" arXiv.2304.10155.

See also:

- Chi-Ming Chang, Ying-Hsuan Lin,
"Words to describe a black hole" arXiv:2209.06728.

Introduction

Better understanding black hole microstates:

- Enumeration: $S_{B H}=A / 4 G=\log$ (microstates)
- Constructing \& better characterizing the individual microstates?

AdS black hole microstates from CFT:

- Requires strong coupling QFT calculations: Hard in general
- BPS black holes: Easier, but still very hard to construct exact BPS operators.

I will explain a modest version of constructing BPS black hole microstates.

- 4d maximal SYM, in terms of certain classical cohomologies.
- Want to eventually study $S U(N \gg 1) . \quad \leftrightarrow \quad$ But today, will report $\operatorname{SU}(2)$ (\& perhaps $\mathrm{SU}(3)$).
- Explore qualitative features \& rough comparison with the "gravity dual"

The operators I present should have more general lessons beyond black holes.

- If you are familiar with chiral rings, SQCD \& mesons/baryons, etc., try to compare them with our new ones and find similarities/differences.

N=4 Yang-Mills \& BPS operators

SU(N) maximal SYM on R^{4} :

- Fields: adjoint representation, i.e. $N \times N$ matrices (written in $\mathrm{N}=1$ language)

| 3 chiral multiplets: | $\phi_{m}(x), \bar{\phi}^{m}(x)$ | and | $\psi_{m \alpha}, \bar{\psi}_{\dot{\alpha}}^{m}$ |
| ---: | :--- | :--- | :--- |$\quad(m=1,2,3) \quad$ (\quad vector multiplet: $A_{\mu}(x) \sim A_{\alpha \dot{\beta}}$ and $\lambda_{\alpha}, \bar{\lambda}_{\dot{\alpha}} \quad(\mu=1, \cdots, 4) \quad(\alpha= \pm, \dot{\alpha}=\dot{ \pm})$

- Supercharges: Poincare $Q_{\alpha}^{i}, \bar{Q}_{i \dot{\alpha}}$ \& conformal $S_{i}^{\alpha}=\left(Q_{\alpha}^{i}\right)^{\dagger}, \bar{S}^{i \dot{\alpha}}=\left(\bar{Q}_{i \dot{\alpha}}\right)^{\dagger} \quad(i=1, \cdots, 4)$

Gauge-invariant local BPS operators: (at $x^{\mu}=0$ on R^{4})

- Pick $Q \equiv Q_{-}^{4}, S \equiv S_{4}^{-}=Q^{\dagger}$: Invariant operators satisfy $[Q, O(0)\}=\left[Q^{\dagger}, O(0)\right\}=0$.
- Generally hard to construct. Easier at weak coupling.
- Free limit $\left(g_{Y M} \rightarrow 0\right)$: Trivially constructed with invariant fields under Q, S :

$$
\bar{\phi}^{m} \equiv \bar{\phi}^{m}, \psi_{m+}, \Lambda_{\dot{\alpha}}, f_{++} \equiv F_{1+i 2,3+i 4} \text { \& derivatives } \partial_{1+i 2} \equiv \partial_{1}-i \partial_{2}, \partial_{3+i 4} \equiv \partial_{3}-i \partial_{4} \text { acting on them }
$$

- Not all of them are invariant when $g_{Y M} \neq 0$: At small $g_{Y M} \ll 1$, $Q \bar{\phi}^{m}=0, Q \psi_{m+} \sim g_{Y M} \epsilon_{m n p}\left[\bar{\phi}^{n}, \bar{\phi}^{p}\right], Q f_{++} \sim g_{Y M} \sum_{m}\left[\psi_{m+}, \bar{\phi}^{m}\right], Q \bar{\lambda}_{\dot{\alpha}}=0,\left[Q, D_{+\dot{\alpha}}\right] \sim g_{Y M}\left[\bar{\lambda}_{\dot{\alpha}},\right\}$
$\rightarrow Q \& S$ at $1 / 2$-loop \rightarrow Anomalous dimension $Q Q^{\dagger}+Q^{\dagger} Q \sim E-E_{B P S}$ at 1-loop, $O\left(g_{Y M}^{2}\right)$.

The cohomology problem

The supercharges are nilpotent, $Q^{2}=0,\left(Q^{\dagger}\right)^{2}=0$
\rightarrow The equation $\left[Q Q^{\dagger}+Q^{\dagger} Q, O(0)\right]=0$ is formally like that for the harmonic form

1-to-1 map: harmonic forms $\leftrightarrow Q$-cohomology class:

- Local operator $\tilde{O}(0)$ satisfying $Q \tilde{O}(0)=0$, with equivalence $\tilde{O} \sim \tilde{O}+Q \Lambda$.

This is generally NOT the physical BPS state. (addition of Q-exact terms)

- Apparently, just tells us the information on the BPS spectrum.
- Still, it provides more information than the index.
- Perhaps there may be more information insensitive to the Q-exact terms...?

Classical (weak-coupling) problem vs. black holes (strong-coupling) ?

- Perturbative non-renormalization proven (w/ certain assumptions) [Chang, Lin] (2022)
- The index counts cohomologies \& captures black holes. [Cabo Bizet, Cassani, Martelli, Murthy]
[Choi, J. Kim, SK, Nahmgoong] [Benini, Milan] (2018) \rightarrow At least some of them are protected.

Gravitons vs. black holes

Two different classes of cohomologies:

- Gravitons \& all the rest: The latter could possibly be "black hole" type.
- "Gravitons" in practice: (well-defined even at finite N)

1) Construct single-trace (~single-particle) cohomologies:
\rightarrow Chiral primaries $\left.\operatorname{tr}\left[\bar{\phi}^{\left(m_{1}\right.} \cdots \bar{\phi}^{m_{n}}\right)\right]$ \& their superconformal descendants (in PSU(1,2|3))
2) Construct multi-trace (~multi-particle) cohomologies by multiplying them.

True "harmonic forms" are not multiplicative, but cohomologies are.

- Mutually BPS objects are often "multiplied" or "superposed" (subject to further corrections).
- Cohomology realizes the "superpositions" of BPS multi-gravitons trivially. (More later)
"Gravitons at finite N" ?: trace relations in QFT \leftrightarrow giant gravitons in gravity
- Subtracting these, we wish to study "quantum" black hole operators for "quantum" gravity.
- Newton constant, controlling the quantumness of gravity: $G_{N} \sim(\text { radius of AdS) })^{3} / N^{2}$

The problem \& progress

The problem at finite N :

- Grade operators with a charge w/ lower bound: Like energy, or in our studies

$$
j \equiv 6(R+J)=2\left(R_{1}+R_{2}+R_{3}\right)+3\left(J_{1}+J_{2}\right) \geq 0 .
$$

- At fixed j, construct all "Q-closed", remove "Q-exact" \& remove gravitons: ヨremainders?
- Increase j and repeat: E.g. has been performed till $j \leq 25$ for $\operatorname{SU}(2)$. [Chang, Lin] (2022)
$\mathrm{SU}(\mathrm{N} \geq 3) \rightarrow$ No progress reported so far. (Some works in progress...)
SU(2) \rightarrow Progress since last September. [Chang, Lin] [Choi, E. Lee, SK, Park] (2022)
- Streamlined studies [Choi, Eunwoo Lee, Siyul Lee, SK, Park] (2023) :

Compute the index over black hole cohomologies to detect them first:

$$
\begin{aligned}
& Z(t)= 1+6 t^{4}-6 t^{5}-7 t^{6}+18 t^{7}+6 t^{8}-36 t^{9}+6 t^{10}+84 t^{11}-80 t^{12}-132 t^{13}+309 t^{14}-18 t^{15}-567 t^{16} \\
&+516 t^{17}+613 t^{18}-1392 t^{19}-180 t^{20}+2884 t^{21}-1926 t^{22}-4242 t^{23}+7890 t^{24}+792 t^{25}-15876 t^{26} \\
&+13804 t^{27}+15177 t^{28}-37536 t^{29}+7049 t^{30}+57522 t^{31}-58704 t^{32}+\cdots \\
& Z_{\text {grav }}(t)= 1+6 t^{4}-6 t^{5}-7 t^{6}+18 t^{7}+6 t^{8}-36 t^{9}+6 t^{10}+84 t^{11}-80 t^{12}-132 t^{13}+309 t^{14}-18 t^{15}-567 t^{16} \\
&+516 t^{17}+613 t^{18}-1392 t^{19}-180 t^{20}+2884 t^{21}-1926 t^{22}-4242 t^{23}+7891 t^{24}+786 t^{25}-15864 t^{26} \\
&+13804 t^{27}+15138 t^{28}-37476 t^{29}+7048 t^{30}+57414 t^{31}-58566 t^{32}+\cdots \\
& Z-Z_{\text {grav }}=-t^{24}+6 t^{25}-12 t^{26}+0 t^{27}+39 t^{28}-60 t^{29}+t^{30}+108 t^{31}-138 t^{32}+\cdots
\end{aligned}
$$

The threshold operator

A representative of the first non-graviton cohomology at $j=24$.

- The "threshold" cohomology [Chang, Lin] [Choi, SK, E. Lee, Park] [Choi, SK, E. Lee, S. Lee, Park]:

$$
\begin{aligned}
& O_{0} \equiv \epsilon^{p_{1} p_{2} p_{3}} v_{p_{1}}^{m} v_{p_{2}}^{n}\left(\psi_{m} \cdot \psi_{n}\right.\left.\times \psi_{p_{3}}\right) \\
& v^{m}{ }_{n} \equiv\left(\phi^{m} \cdot \psi_{n}\right)-\frac{1}{3} \delta_{n}^{m}\left(\phi^{p} \cdot \psi_{p}\right)
\end{aligned}
$$

[Used 3d vector notation for $\operatorname{SU}(2)$ adjoints: $A \cdot B \sim \operatorname{tr}(A B)$ and $A \times B \sim[A, B]$.]

One may speculate it as the "smallest black hole" in the "most quantum AdS/CFT"

- Entropy is $S=\log 1=0$. Not like semi-classical black holes at all.
- Unclear to what extent it behaves like a black hole, if any.
- Not all aspects of semi-classical black holes are respected, but some seem to be.

To better appreciate the last point, helpful to study the higher order terms:

- It apparently looks like there are many non-graviton states at $j>24$.
- But most of them below are superconformal descendants of O_{0}.

$$
Z-Z_{\text {grav }}=-t^{24}+6 t^{25}-12 t^{26}+0 t^{27}+39 t^{28}-60 t^{29}+t^{30}+108 t^{31}-138 t^{32}+\cdots
$$

A no-hair theorem?

Superconformal representation of the threshold operator:

- Cohomology problem has $\operatorname{PSU}(1,2 \mid 3) \subset \operatorname{PSU}(2,2 \mid 4)$ symmetry, after picking Q, S.
- $\quad O_{0}$ at $j=24$ is the primary of a $\operatorname{PSU}(1,2 \mid 3)$ rep.
- The index over this rep. \& the remainder:

$$
\begin{gathered}
\chi_{0}(t)=-t^{24}+6 t^{25}-12 t^{26}+0 t^{27}+39 t^{28}-60 t^{29}+t^{30}+108 t^{31}-135 t^{32}+\cdots \\
Z-Z_{\text {grav }}-\chi_{0}(t)=-3 t^{32}+\cdots
\end{gathered}
$$

There is a "boring" range $25 \leq j \leq 31$, which in fact is quite novel.

- $\quad O_{0} \times$ (graviton) may yield new cohomologies. But most of them are not seen in the index.
- \quad Simplest possibility: All Q-exact (i.e. absent) \leftarrow Checked explicitly for many (next slide).
- Signals a black hole no-hair theorem: "No extra graviton hairs can dress a black hole."

A "partial no-hair theorem" in the index

- " $-3 t^{32 "}$ is the product $\operatorname{tr}\left(2 \bar{\phi}^{m} f+\epsilon^{m n p} \psi_{n} \psi_{p}\right) O_{0}$: limited "hairy BH operators".
- Conformal primaries of gravitons: 29 of 32 dressing O_{0} do not appear in the index.
- Conformal descendants...? (More later)

Illustration: Q-exactness

t^{28}

$$
\begin{aligned}
O_{0}\left(\bar{\phi}^{(m} \cdot \bar{\phi}^{n)}\right)=-\frac{1}{14} Q & {\left[20 \epsilon^{r s(m}\left(\bar{\phi}^{n)} \cdot \psi_{p+}\right)\left(\bar{\phi}^{p} \cdot \psi_{r+}\right)\left(\bar{\phi}^{q} \cdot \psi_{q+}\right)\left(f_{++} \cdot \psi_{s+}\right)\right.} \\
& -20 \epsilon^{p r s}\left(\bar{\phi}^{(m} \cdot \psi_{p+}\right)\left(\bar{\phi}^{n)} \cdot \psi_{r+}\right)\left(\bar{\phi}^{q} \cdot \psi_{q+}\right)\left(f_{++} \cdot \psi_{s+}\right) \\
& +30 \epsilon^{p r s}\left(\bar{\phi}^{(m} \cdot \psi_{p+}\right)\left(\bar{\phi}^{n)} \cdot \psi_{r+}\right)\left(\bar{\phi}^{q} \cdot \psi_{s+}\right)\left(f_{++} \cdot \psi_{q+}\right) \\
& -7 \epsilon^{a_{1} a_{2} p} \epsilon^{b_{1} b_{2}(m}\left(\bar{\phi}^{n)} \cdot \psi_{p+}\right)\left(\bar{\phi}^{q} \cdot \psi_{q+}\right)\left(\psi_{a_{1}+} \cdot \psi_{a_{2}+}\right)\left(\psi_{b_{1}+} \cdot \psi_{b_{2}+}\right) \\
& \left.+18 \epsilon^{a_{1} a_{2} p} \epsilon^{b_{1} b_{2}(m}\left(\bar{\phi}^{n)} \cdot \psi_{q+}\right)\left(\bar{\phi}^{q} \cdot \psi_{p+}\right)\left(\psi_{a_{1}+} \cdot \psi_{a_{2}+}\right)\left(\psi_{b_{1}+} \cdot \psi_{b_{2}+}\right)\right]
\end{aligned}
$$

$t^{29}: \quad O_{0}\left(\bar{\phi}^{m} \cdot \bar{\lambda}_{\dot{\alpha}}\right)=\frac{1}{8} Q\left[40 \epsilon^{m n p}\left(f_{++} \cdot \psi_{q+}\right)\left(\bar{\lambda}_{\dot{\alpha}} \cdot \psi_{r+}\right)\left(\bar{\phi}^{q} \cdot \psi_{n+}\right)\left(\bar{\phi}^{r} \cdot \psi_{p+}\right)\right.$

$$
\begin{aligned}
& -4 \epsilon^{m a_{1} a_{2}} \epsilon^{n b_{1} b_{2}}\left(\bar{\lambda}_{\dot{\alpha}} \cdot \psi_{n+}\right)\left(\bar{\phi}^{p} \cdot \psi_{p+}\right)\left(\psi_{a_{1}+} \cdot \psi_{a_{2}+}\right)\left(\psi_{b_{1}+} \cdot \psi_{b_{2}+}\right) \\
& +6 \epsilon^{m a_{1} a_{2}} \epsilon^{n b_{1} b_{2}}\left(\bar{\lambda}_{\dot{\alpha}} \cdot \psi_{p+}\right)\left(\bar{\phi}^{p} \cdot \psi_{n+}\right)\left(\psi_{a_{1}+} \cdot \psi_{a_{2}+}\right)\left(\psi_{b_{1}+} \cdot \psi_{b_{2}+}\right) \\
& \left.+\epsilon^{n a_{1} a_{2}} \epsilon^{p b_{1} b_{2}}\left(\bar{\lambda}_{\dot{\alpha}} \cdot \psi_{n+}\right)\left(\bar{\phi}^{m} \cdot \psi_{p+}\right)\left(\psi_{a_{1}+} \cdot \psi_{a_{2}+}\right)\left(\psi_{b_{1}+} \cdot \psi_{b_{2}+}\right)\right]
\end{aligned}
$$

$t^{30}: \quad O_{0}\left(\bar{\phi}^{m} \cdot \psi_{n+}-\frac{1}{3} \delta_{n}^{m} \bar{\phi}^{p} \cdot \psi_{p+}\right)$

$$
=\frac{1}{4} Q\left[\epsilon_{n p q} \epsilon^{r a_{1} a_{2}} \epsilon^{q b_{1} b_{2}} \epsilon^{m c_{1} c_{2}}\left(\bar{\phi}^{p} \cdot \psi_{r+}\right)\left(\psi_{a_{1}+} \cdot \psi_{a_{2}+}\right)\left(\psi_{b_{1}+} \cdot \psi_{b_{2}+}\right)\left(\psi_{c_{1}+} \cdot \psi_{c_{2}+}\right)\right]
$$

The BMN subsector

Even for $\operatorname{SU}(2)$, computations take long time (especially $Z_{\text {grav }}$).
\exists subsector containing $\bar{\phi}^{m}, \psi_{m}, f$ (no derivatives and gauginos):

- $\quad Q \bar{\phi}^{m}=0, Q \psi_{m} \sim \epsilon_{m n p}\left[\bar{\phi}^{n}, \bar{\phi}^{p}\right], Q f \sim \sum_{m}\left[\bar{\phi}^{m}, \psi_{m}\right]$.
- BMN matrix model truncation of SYM. [Berenstein, Maldacena, Nastase] [Plefka, N. Kim, Klose]

Result in this sector: [Choi, E. Lee, S. Lee, SK, Park] (only 3 out of 17 gravitons in BMN sector)

$$
\left[Z(t)-Z_{\text {grav }}(t)\right]_{B M N}=-\frac{t^{24}}{1-t^{12}}
$$

series of "core black hole" primary operators
(x)

$$
\left(1-t^{2}\right)^{3} \cdot \frac{1}{\left(1-t^{8}\right)^{3}}
$$

superconformal descendants within BMN

- The ∞-tower of "core" primaries (not of the "BH x graviton" form)

$$
\begin{aligned}
O_{n}= & (f \cdot f)^{n} \epsilon_{1}^{c_{1} c_{2} c_{3}}\left(\phi^{a} \cdot \psi_{c_{1}}\right)\left(\phi^{b} \cdot \psi_{c_{2}}\right)\left(\psi_{a} \cdot \psi_{b} \times \psi_{c_{3}}\right) \\
& +n(f \cdot f)^{n-1} \epsilon^{b_{1} b_{2} b_{3}} \epsilon^{c_{1} c_{2} c_{3}}\left(f \cdot \psi_{b_{1}}\right)\left(\phi^{a} \cdot \psi_{c_{1}}\right)\left(\psi_{b_{2}} \cdot \psi_{c_{2}}\right)\left(\psi_{a} \cdot \psi_{b_{3}} \times \psi_{c_{3}}\right) \\
& -\left(\frac{n}{72}+\frac{n(n-1)}{108}\right)(f \cdot f)^{n-1} \epsilon^{a_{1} a_{2} a_{3}} \epsilon^{b_{1} b_{2} b_{3}} \epsilon^{c_{1} c_{2} c_{3}}\left(\psi_{a_{1}} \cdot \psi_{b_{1}} \times \psi_{c_{1}}\right)\left(\psi_{a_{2}} \cdot \psi_{b_{2}} \times \psi_{c_{2}}\right)\left(\psi_{a_{3}} \cdot \psi_{b_{3}} \times \psi_{c_{3}}\right)
\end{aligned}
$$

- Entropically not that many, but they all respect partial no-hair behaviors in the index

The "gravity dual"

Now, instead of $N=2$ that we studied so far, we study $N=\infty$.
BPS black hole solutions in $\operatorname{AdS} S_{5} \times S^{5}$: [Gutowski, Reall] (2004)

- Exists only when a charge relation is met.

$$
R^{3}+\frac{N^{2}}{2} J^{2}-\left(3 R+\frac{N^{2}}{2}\right)\left(3 R^{2}-N^{2} J\right)=0
$$

Scalar hair: Φ dual to $\operatorname{tr}\left(X^{2}+Y^{2}+Z^{2}\right)$:

- We found no-hair behavior for this operator in QFT (s-wave)
- Can we turn on small hair, $\Phi(x) \sim \varepsilon \ll 1$, without substantially changing the background at leading order in ε ?
- In other words, we try to "multiply" these gravitons to BH.
- Solution to BPS equation:

$$
\begin{aligned}
& \Phi(x, \theta, \phi, \psi)= \\
& \varepsilon x^{\frac{m-2 q / \ell^{2}}{1+3 q / \ell^{2}}}\left(1+\frac{3 q}{\ell^{2}}+\frac{x}{\ell^{2}}\right)^{-\frac{1+m+q / \ell^{2}}{1+3 q / \ell^{2}}}\left(\cos \frac{\theta}{2} e^{i \phi_{1}}\right)^{m_{1}}\left(\sin \frac{\theta}{2} e^{i \phi_{2}}\right)^{m_{2}} \\
& \\
& \quad m_{1}+m_{2}=2 m \quad m_{1}, m_{2}=0,1,2, \cdots
\end{aligned}
$$

- Singular at event horizon $x=0$ for $m<2 q / \ell^{2}$.
- Including "s-wave" (\sim conformal primary) at $m=0$.
- Regular perturbative hairs allowed only for conformal descendants.

Hairy BPS black holes

With Φ, hairy BPS black holes are studied. [Markeviciute, Santos] [Markeviciute] (2018)

- Studied "s-wave" sector. Φ at s-wave always back-reacts heavily to $B H$, even at $\varepsilon \ll 1$.
- Induces (mild) singularity at the horizon.
- Doesn't look like "superposing" or "multiplying" gravitons to BH.

Very crude comparisons \& lessons

1) Over-rotating hairs:

- "Dress" black holes in the traditional spirit of "hairs"

Similar to what we found in $\operatorname{SU}(2)$. (Except the partial hair at $-3 t^{32}$ and O_{1} at t^{36}, all the rest till $j \leq 38$ can be explained as O_{0} times conformal descendant gravitons.)

- Over-rotating hairy solutions can be constructed even beyond BPS limit: Hairs back-react weakly, basically "multiplied" or "superposed". [SK, Kundu, E. Lee, J. Lee, Minwalla, Patel] (2023)

2) Under-rotating hairs:

- Want to "back-react" substantially to the background BH.
- Not admitting small graviton hairs dressing the BH. More studies needed.

Conclusion

Recent progress on AdS black holes from exact QFT observable.
Today, I explained a tangential program of "constructing" individual microstates.

- Weak-coupling cohomology problem
- Technical strategies: First count finite N gravitons \& subtract from the index

BMN matrix model subsector

- Higher $\operatorname{SU}(N)$? Higher charges? Partial progress for SU(3):

Use of Groebner basis to count gravitons;
Identified BH threshold level [work in progress \rightarrow by my students Jae Hyeok Choi \& Jehyun Lee]

- Ideas/techniques from: computer science, algebraic geometry, quantum information, ...
- Insights from the emergent structures in the twisted sector? [Costello, Gaiotto],

Difference of over-/under-rotating hairy BH's \& similarities with $S U(2)$ cohomologies.

Some challenging questions on black holes may be better addressed.

- We already see a hint of the black hole "no-hair" behaviors.
- Black hole interior? Quantum complexity?

