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A recurring motif in our study of holography is the idea that the
Feynman diagrams of a large N gauge theory reorganize into a genus
expansion of some string theory.

It is natural to ask to what extent the notion of gauge-string duality
persists at finite N.

In this talk, I will describe an intriguing pattern that appears in the
spectra of finite N gauge theories at zero coupling. Namely, the exact
finite N spectrum organizes as a systematic set of e−N corrections to the
large N spectrum. These corrections turn out to have a transparent
holographic interpretation in the bulk – they are contributions from giant
graviton branes and open string excitations thereof.



After describing the pattern, I will explain why the pattern is there and
what we can learn about the bulk space of states with this knowledge.

The attitude with which I’ll proceed is to learn what the basic kinematic
rules are in the bulk string theory by squeezing the dual gauge theory.
The giant graviton expansion is an open-closed SFT formula which
clearly suggests some rules in the bulk that we did not know before. The
goal will be to understand better how the gauge-string dictionary could
be extended to finite N.



Let us begin with simple observations about various finite N spectra. We
start with observations in the superconformal index of U(N) N = 4 SYM
for context, but I will later explain why these patterns persist in any
theory of gauged N × N matrices.

The half-BPS index of U(N) N = 4 SYM

ZN =
N∏

n=1

1
1 − xn

,

counts states of the form
∏

i (TrX
mi )|0⟩. A notable feature is that the

product has a cutoff at N due to trace relations that render the operator
TrXN+1 no longer independent of the lower traces.



Suppose we want to isolate the finite N effects on the spectrum. A way
to do this is to divide ZN by Z∞. Doing so for large values of N, one
observes that

ZN

Z∞
= 1 − xN+1(1 + x + x2 + x3 + x4 + x5 + · · · )

+ x2N+3(1 + x + 2x2 + 2x3 + 3x4 + 3x5 + · · · )
− x3N+6(1 + x + 2x2 + 3x3 + 4x4 + 5x5 + · · · ) + · · ·

=
∞∑
k=0

xkN
(−1)kxk(k+1)/2∏k

m=1(1 − xm)

which is the so-called “giant graviton expansion” for the simplest case of
half-BPS. The finite N corrections enter in the spectrum roughly at every
interval of N.



For the 1
16 -BPS index of N = 4 SYM, one finds a similar structure:

ZN

Z∞
=1 + w2N 1

2!

[
(−N2 − 5N − 6)w2 + 2(N2 + 3N + 2)w3 − 3(N(N + 1))w4

+ 6(N2 − N − 2)w5 + · · ·
]

+ w4N 1
5!

[
2(N5 + 25N4 + 245N3 + 1175N2 + 2754N + 2520)w8

− 2(8N5 + 165N4 + 1370N3 + 5775N2 + 12482N + 11160)w9

+ 12(6N5 + 105N4 + 760N3 + 2915N2 + 6054N + 5490)w10

+ · · ·
]

+ w6N
[ 1
8!
(−3N8 − 180N7 − 4662N6 − 68040N5 − 611667N4

− 3466260N3 − 12084468N2 − 23681520N − 19958400)w18

+ · · ·
]
+ · · ·



The N-dependence of coefficients appears because I’ve written a
specialization of fugacities that is typically used to study 1

16 -BPS black
holes. A fully-refined version of this formula has N-independent
coefficients.



The RHS of the expansions

Z
1
2BPS
N = Z

1
2BPS
∞

∞∑
k=0

xkN Ẑk(x)

Z
1
16BPS
N = Z

1
16BPS
∞

∞∑
k1,k2,k3=0

xk1Nyk2Nzk3N Ẑ(k1,k2,k3)(x , y , z , p, q)

have independent definitions in terms of
∏

i U(ki ) gauge integrals owing
to their bulk interpretations. The terms in the sum correspond to k
coincident branes wrapping S3 ⊂ S5 and their open string modes. The
prefactor Z∞ counts closed strings, or the tower of BPS Kaluza-Klein
modes.



The integrand for the 1-loop open string modes Ẑki can be found either
by (1) counting the modifications of determinant operators in gauge
theory [Gaiotto & JHL ’21], or by (2) counting modes on probe D3 giant
gravitons in the supergravity limit [Imamura ’21]. These results agree in
holographic examples.

The
∏

i U(ki ) gauge theories living on bulk branes are defined with an
unusual integration cycle, essentially because the usual k-torus contour
fails to pick up residues from poles that correspond to their physical
excitations. One needs to define the

∏
i U(ki ) theory with a contour

prescription taking residues from physical poles [JHL ’22].

The derivation of the integrand and the integration cycle for general
brane indices Ẑki are interesting on their own right, but unfortunately I
won’t have time to explain them today.



In the half-BPS sector, the k-th term is the half-BPS partition function
of the U(k) gauge theory living on k coincident giants. Recall that
half-BPS chiral primaries are a purely-bosonic sector where the index
equals the partition function.

Ẑk =
1
k!

1
(1 − x−1)k

∮ k∏
a=1

dσa
2πiσa

k∏
a,b=1
a ̸=b

(σa − σb)

(σa − x−1σb)

Why does the inverse x−1 appear? The inverse x−1 appears because x is
the fugacity for an R-charge and half-BPS excitations of maximal giants
(i.e. those that wrap a maximal S3 in S5) can only take away R-charges.



Ẑk =
1∏k

m=1(1 − x−m)
= (−1)k

xk(k+1)/2∏k
m=1(1 − xm)

While a naive interpretation of the brane index Ẑk at |x | > 1 would say
that the open-string spectrum is unbounded below, we should remember
that excitations on top of a given closed-string vacuum need to be
understood in the domain |x | < 1 where the Kaluza-Klein spectrum Z∞
is defined.

Indeed, one important purpose of the modified
∏

i U(ki ) integration cycle
was to make the integral well-defined in the region |x | < 1. Therefore,
the space of normalizable half-BPS open-string states has a spectrum
that is given by the rightmost expression.



There is an important consequence to understanding the brane partition
function Ẑ (x) in the region |x | < 1. The analytic continuation from the
region outside the unit disk to inside the unit disk gives an extra overall
sign (−1)k for odd numbers of giants.



Let us observe the manner in which stacks of giant gravitons sum to give
the half-BPS spectrum:

N∏
n=1

1
1 − xn

=
1∏∞

n=1(1 − xn)

∞∑
k=0

(−1)kxkN
xk(k+1)/2∏k
m=1(1 − xm)

Via direct power expansion, one can see that each giant graviton term on
the RHS, supplemented with Kaluza-Klein modes, overcounts the gauge
theory partition function.

This overcounting in the bulk side of the formula is saved only by extra
signs (−1)k , which results from the analytic continuation of the
R-symmetry fugacity x .

Odd stacks of giant gravitons effectively behave as fermions in the bulk
half-BPS Hilbert space, even though the half-BPS Hilbert space of the
dual CFT only involves gauge-invariant combinations of bosonic scalars
X .



I want to emphasize that the sign does not come from the usual (−1)F ,
because we are not computing an index in the half-BPS sector. The sign
appears in the formula purely due to the analytic continuation.

If we wish to give a Hilbert space interpretation to the bulk side of the
formula, the most natural postulate for the presence of (−1)k would be
that there is a different Z2-grading in the bulk space of states that is not
present in the CFT Hilbert space.

The extra signs from the analytic continuation appear in all known
examples, on top of the usual (−1)F for the index.



Having stated the problem, i.e. of understanding the extra grading in the
bulk, it is natural to ask if there is a way to understand the grading from
the (more tractable) gauge theory side even if it does not appear at the
level of its Hilbert space.

In the rest of the talk I will explain, starting from the data of a free U(N)
gauge theory, how to construct the Hilbert space associated with the bulk
side of the giant graviton formula.

A surprise is that the reason why the formula exists is not associated with
the theory having supersymmetry-protected quantities or the string dual
admitting a weakly-curved gravity regime. Rather, the only relevant
information is that we are computing invariants of a set of N × N
matrices.



The notion of giant gravitons was conceived in order to provide a bulk
explanation of the presence of finite N trace relations, in terms of the
polarization of large charge gravitons into branes. The goal of the
remaining part of the talk will be to explain why giant gravitons
implement trace relations as transparently as possible.

We need to develop basic algebraic tools along the way, but it will
eventually be clear that these tools have physical significance.



Let us consider a free U(N) gauge theory on S1 ×M for M a compact
manifold. If its Hilbert space splits into different topological sectors, we
restrict attention to one sector at a time.

Consider the ring of all gauge invariant polynomials of fields and their
derivatives

R = C[TrX ,TrXY ,TrψF···,Tr ∂···∂···X , · · · ].

At N = ∞, the space of states is the free module M∞ = R|0⟩ built on
the vacuum |0⟩. M∞ is graded with respect to the quantum numbers of
its generators.



To find the space of states a free gauge theory at finite N, one takes the
quotient

MN = M∞/M̃N

of M∞ by the submodule M̃N = IN |0⟩, where the ideal over R

IN = ⟨ trace relations at N ⟩R

is generated by the set of all trace relations present at finite N.

For a single matrix X at N = 2, these relations look like

Tr(X )3 − 3Tr(X ) Tr(X 2) + 2Tr(X 3) = 0

Tr(X )4 − 6Tr(X )2 Tr(X 2) + 3Tr(X 2)2 + 8Tr(X ) Tr(X 3)− 6Tr(X 4) = 0

and so on.



What makes the study of the quotient module MN difficult is that MN is
in general not freely generated, i.e. it is not a Fock space. This means
that we can only describe MN at best in terms of a set of generators that
necessarily have relations among themselves.

Having these relations is problematic if we are interested in describing the
space of states as a Fock space built from single trace oscillators.



We can address this problem by computing the free resolution of the
quotient module MN . A free resolution of MN is an exact sequence of
free R-modules Vk along with differential Q̂

· · · → V3
Q̂−→ V2

Q̂−→ V1
Q̂−→ M∞ → MN → 0

with Q̂V1 = M̃N , i.e. the image of Q̂1 is the submodule generated by the
trace relations.

Each component of this complex is graded with respect to the quantum
numbers induced from the generators of the ring R. The complex itself
has a grading which I’ll call B, under which Q̂ has degree −1.



· · · → V3
Q̂−→ V2

Q̂−→ V1
Q̂−→ M∞ → MN → 0

Intuitively, a free resolution “resolves” a highly-constrained finite N
Hilbert space MN by replacing it with an (infinite) sequence of Fock
spaces Vk that better and better approximate MN .

Since M∞ maps to MN , the zeroth approximation to the finite N module
MN is the large N module V0 ≡ M∞.

The subsequent free modules Vk can be understood as the space of
relations among the generators of Vk−1. For example, V1 is the space of
relations among the large N Fock space generators of M∞, i.e. the
generators of V1 map to trace relations under Q̂. Then V2 is the space of
relations among trace relations, and so on.

Therefore, Vk is the space of k-th order relations among the large N
Fock space generators.



One may be concerned that the free resolution of MN is not unique, and
indeed in general there are inequivalent ways to resolve MN .

However, there is a notion of uniqueness for the free resolution of MN ,
because there are only a finite number of generators of R for given values
of the charges.

So at any particular values of the charges, we get a finite resolution and
there is a unique “minimal” free resolution defined to be a resolution for
which each free module has a minimal number of generators.

Any resolution that I mention in subsequent discussion will be the
minimal one.



The generators of Vk and the matrix-valued differentials Q̂ are explicitly
computable, given the set of trace relations at some N. Of course, in
practice we must work with a truncation at some “energy” L for the
generators of R and of trace relations.

The result of the computation stabilizes as L is increased.



Given a graded R-module M, one can compute its Hilbert series HSM .
This is the free partition function of a theory with Hilbert space M, up to
a possible overall shift in the energy.

A key property of a free resolution is that the Hilbert series of the module
being resolved is equal to the alternating sum of the Hilbert series of free
modules in the resolution. In our case,

HSMN
(t1, · · · , tn) =

∞∑
k=0

(−1)kHSVk
(t1, · · · , tn)

where n is the number of charges with which we refine the series.



I would now like to argue the following:

Vk = Hclosed
∞ ⊗Hopen

k

the free module Vk of k-th order relations over the ring R resolving the
free U(N) gauge theory space of states MN should be interpreted in the
string dual as the α′ → ∞ limit of the space of normalizable open string
states in a sector with k branes of the giant graviton-type, sharing a
closed-string background with spectrum given in terms of Hclosed

∞ .

If there are multiple types of brane systems with total number k , Hopen
k

decomposes into a direct sum of spaces associated with each brane
system labelled by k .



A consequence of this is an equivalence at the level of the partition
functions at each k :

(−1)kHSVk
(t1, · · · , tn) = Z∞

∑
∑

a ka=k

tk1N
1 · · · tknNn Ẑ(k1,··· ,kn)(t1, · · · , tn)

In words, the Hilbert series HSVk
, counting the dimensions of the free

module Vk of k-th order relations in a free U(N) gauge theory, should be
interpreted as the α′ → ∞ limit of an open-closed SFT partition function
in a sector with k branes of the giant graviton-type.

This is the k-th term that appears in the giant graviton expansion.



It makes sense that closed string spectrum Z∞ factors out of the
expression, because we are computing the Hilbert series of a free module
Vk over R. Z∞ is simply the Hilbert series of R.

If Vk were not free, the closed string spectrum would not factor out. So
the open-string sector is the non-trivial part.



If we are computing the index with (−1)F in e.g. N = 4 SYM dual to
IIB in AdS5 × S5, rather than the free partition function, the RHS at
fixed k can be computed in the bulk in the α′ → 0 limit from the
DBI+CS action, as was done in various works of Imamura et al.

I checked the equivalence of the Hilbert series of Vk with the k-th term
in the giant graviton expansion (computed via the gauge theory
prescription in Gaiotto-JHL) in a limited number of simple examples, e.g.
U(N)-gauged boson X , fermion ψ, two bosons X and Y , etc. at low
orders.

There is computational difficulty in enumerating and resolving the finite
N trace relations over the large N ring R.

More computations of free resolutions of MN at higher orders are
required to understand properties such as the precise manner in which
HSVk

depends on N.



For the case of the U(N)-gauged boson X , it is possible to show
analytically that

(−1)kHSVk
(x) =

1∏∞
n=1(1 − xn)

(−1)kxkNxk(k+1)/2∏k
m=1(1 − xm)

.

which I’ll do in a moment.



Before I do so, I want to explain an earlier comment regarding an extra
grading that appears in the giant graviton expansion.

The extra signs come from the Z-grading B in the free resolution, which
is a grading that is independent of the other quantum numbers and that
does not appear at the level of the gauge theory Hilbert space MN .

That is, the bulk side of the giant graviton expansion is the refined Euler
character of the free resolution I described:

HSMN
(t1, · · · , tn) =

∞∑
k=0

(−1)kHSVk
(t1, · · · , tn)



Having a free resolution consisting of modules Vk allows us to say more,
namely that Q̂ has an interpretation as a differential relating string states
in different open string vacua labelled by k .

The resolution however only gives a classical expression for the nilpotent
matrix-valued differential Q̂, but it would be very interesting if
nonperturbative overlaps O(e−N) due to instanton effects can be
understood.



Now let us show analytically that

(−1)kHSVk
(x) =

1∏∞
n=1(1 − xn)

(−1)kxkNxk(k+1)/2∏k
m=1(1 − xm)

.

for the U(N)-gauged boson X .



The ring of all gauge-invariant polynomials is

R = C[TrX ,TrX 2,TrX 3, · · · ].

At any value N, the space of trace relations is generated by

PN+1,PN+2,PN+3, · · ·

where

P1 = TrX

P2 =
1
2
(
TrX 2 − (TrX )2

)
P3 =

1
6
(
TrX 3 − 3(TrX 2)(TrX ) + 2(TrX )3

)
and so on. The Pn can be written down using the generating function

exp

(
−

∞∑
n=1

un

n
TrX n

)
.



A special property of the U(N)-gauged boson X is that the ring R of all
gauge-invariant polynomials can equivalently be expressed in terms of the
trace relation generators Pn themselves:

R = C[P1,P2,P3, · · · ],

a fact which leads to simplifications. The infinite N module is
M∞ = R|0⟩.



We want to find the free resolution of the quotient module

MN = M∞/IN |0⟩,

where IN is the ideal

IN = ⟨PN+1,PN+2, · · · ⟩

generated by the trace relations.



A gauge theory perspective would be to simply set to zero the generators
PN+1,PN+2, · · · of IN . Then the partition function

ZN =
N∏

n=1

1
1 − xn

is computed from the Fock space of oscillators P1,P2, · · · ,PN .



The bulk perspective would be to consider the free resolution of MN :

· · · → V3
Q̂−→ V2

Q̂−→ V1
Q̂−→ M∞ → MN → 0

The zeroth component of this resolution is M∞, which is the half-BPS
partition function in a closed-string background with no half-BPS giant
gravitons:

HSM∞(x) =
∞∏
n=1

1
1 − xn



The first component V1 is composed of generators that map to trace
relations under Q̂

Q̂ψ−N−a = PN+a

where a = 1, 2, 3, · · · . The differential Q̂ preserves the R-charge grading,
so ψ−N−a has energy/R-charge N + a.

By working out the way in which the matrix-valued differential Q̂ acts on
generators of V2, one finds

Q̂(ψ−N−aψ−N−b) = P−N−aψ−N−b − P−N−bψ−N−a

where (ψ−N−aψ−N−b) denotes a two component generator of V2, with
a < b and a, b = 1, 2, 3, · · · .



The pattern continues for Vk :

Q̂(ψ−N−a1 · · ·ψ−N−ak ) =
k∑

i=1

(−1)k+1P−N−ai (ψ−N−a1 · · · ψ̂−N−ai · · ·ψ−N−ak )

where a1 < · · · < ak and a1, · · · , ak = 1, 2, 3, · · · .



It is clear that, for Vk , we should count the number of fermionic
oscillators starting at energies N + 1:

∑
a1<···<ak

xN+a1xN+a2 · · · xN+ak =
xkNxk(k+1)/2∏k
m=1(1 − xm)

In the above, we’ve counted the generators of Vk but we should
remember that the generators have coefficients in the large N ring R:

HSVk
(x) =

1∏∞
n=1(1 − xn)

xkNxk(k+1)/2∏k
m=1(1 − xm)

.

This was the desired expression for the half-BPS partition function
around k giant gravitons.



Computing the refined Euler character of the free resolution we find

N∏
n=1

1
1 − xn

=
1∏∞

n=1(1 − xn)

∞∑
k=0

(−1)kxkN
xk(k+1)/2∏k
m=1(1 − xm)

the giant graviton expansion for a single U(N) bosonic matrix.

I hope now it is clear why the effective theory giant gravitons is
fermionic. The generators of the space of k-th order relations were a
k-collection of modes of a single fermionic field with B = 1

ψ(z) =
∑
n∈Z

ψn

zn+N+1 .

of dimension N + 1 and B = 1.



In this talk, I’ve only been able to explain basic kinematical aspects of
what of a dual string theory can be squeezed from the spectrum of a free
U(N) gauge theory.

Much remains to be learned and computed at finite N...



Thank you


	Half-BPS sector

