Tracy-Widom distributions in AdS/CFT

Gregory Korchemsky

IPhT, Saclay \& IHES

In collaboration with M. Beccaria, A. Belitsky, A. Tseytlin
"Precision Holography"
June 9, 2023

Outline

Ultimate goal is to solve four-dimensional superconformal $\mathcal{N}=2$ and $\mathcal{N}=4$ Yang-Mills theories for arbitrary 't Hooft coupling $\lambda=g_{\mathrm{YM}}^{2} N_{c}$, to any order in $1 / N_{c}$

Existing techniques (localization, integrability) allows us to realize this program for a special class of observables
\checkmark Weak coupling expansion is easy, what we expect at strong coupling?
\checkmark Tracy-Widom distribution in random matrices
\checkmark Free energy in $\mathcal{N}=2$ SYM on sphere
\checkmark Correlation function of (infinitely) heavy half-BPS operators in $\mathcal{N}=4$ SYM
\checkmark Strong coupling expansion from Szegő-Akhiezer-Kac formula

What we expect at strong coupling

Simple example: circular Wilson loop in planar $\mathcal{N}=4$ SYM

$$
W=\frac{1}{N_{c}}\left\langle\operatorname{tr} P \mathrm{e}^{i g_{\mathrm{YM}}} \oint d s \dot{x} \cdot A(x(s))+i \Phi(x(s))\right| \dot{x}(s)| \rangle=\frac{2}{\sqrt{\lambda}} I_{1}(\sqrt{\lambda})
$$

't Hooft coupling $\lambda=g_{\mathrm{YM}}^{2} N_{c}$
Expansion at weak and strong coupling

$$
\begin{aligned}
& W^{\lambda \leqq 1} 1+\frac{\lambda}{8}+\frac{\lambda^{2}}{192}+\frac{\lambda^{3}}{9216}+\frac{\lambda^{4}}{737280}+\ldots \\
& W^{\lambda \geqq 1} \stackrel{\ln }{=} \exp \left(\sqrt{\lambda}-\frac{1}{2} \log \left(\frac{\pi}{2} \lambda^{3 / 2}\right)-\frac{3}{8 \sqrt{\lambda}}-\frac{3}{16 \lambda}-\frac{21}{128 \lambda^{3 / 2}}+\ldots\right)
\end{aligned}
$$

Semiclassical asymptotics in AdS/CFT

$$
\log W=-\sqrt{\lambda} A_{0}-A_{1} \log (\sqrt{\lambda})-B-\frac{A_{2}}{\sqrt{\lambda}}-\frac{A_{3}}{\lambda}-\frac{A_{4}}{\lambda^{3 / 2}}+\ldots
$$

$\checkmark A_{0}$ minimal area in AdS_{5}
$\checkmark A_{i}$ and B come from fluctuations (very hard to compute in AdS/CFT)

Tracy-Widom distribution

Describes statistics of the spacing of the eigenvalues of $N \times N$ hermitian matrices for $N \rightarrow \infty$ Gaussian Unitary Ensemble

$$
Z_{\mathrm{GUE}}=\int d^{N \times N} a e^{-\frac{1}{2} \operatorname{tr} a^{2}}=\int_{-\infty}^{\infty} d \lambda_{1} \ldots d \lambda_{N} \prod_{i \neq j}\left(\lambda_{i}-\lambda_{j}\right)^{2} e^{-\frac{1}{2} \sum_{i} \lambda_{i}^{2}}
$$

Laguerre ensemble (Wishart matrix theory)

$$
Z_{\text {Laguerre }}=\int_{0}^{\infty} d \lambda_{1} \ldots d \lambda_{N} \prod_{i \neq j}\left(\lambda_{i}-\lambda_{j}\right)^{2} \prod_{i=1}^{N} \lambda_{i}^{\ell} e^{-\lambda_{i}}
$$

where $\ell>-1$ and eigenvalues are located on semi-axis $[0, \infty)$.
The probability density for eigenvalues

$$
\begin{aligned}
& R_{n}\left(x_{1}, \ldots, x_{n}\right)=\left\langle\prod_{i=1}^{n} \delta\left(\lambda_{i}-x_{i}\right)\right\rangle=\left.\operatorname{det} K_{N}\left(x_{i}, x_{j}\right)\right|_{i, j=1, \ldots, n} \\
& K_{N}(x, y)=\sum_{k=0}^{N-1} \phi_{k}(x) \phi_{k}(y)
\end{aligned}
$$

where $\phi_{k}(x)$ are orthonormal functions $x^{k} e^{-x^{2} / 2}+\ldots$ (GUE) and $x^{k} x^{\ell / 2} e^{-x / 2}+\ldots$ (Laguerre)

Tracy-Widom distribution II

The distribution of the eigenvalues in the Laguerre ensemble in the limit $N \rightarrow \infty$

$$
R_{1}(4 N x) \sim \frac{1}{2 \pi} \sqrt{\frac{1-x}{x}}
$$

Scaling behaviour of $K_{N}(x, y)$ around $x=0$ (hard edge), $x=1$ (soft edge) and $0<x<1$ (bulk)
bulk :

$$
\begin{aligned}
& \frac{\sin \pi(x-y)}{\pi(x-y)} \\
& \frac{\operatorname{Ai}(x) \mathrm{Ai}^{\prime}(y)-\mathrm{Ai}(x) \mathrm{Ai}^{\prime}(y)}{x-y}
\end{aligned}
$$

soft edge :
hard edge :

$$
\frac{J_{\ell}(\sqrt{x}) \sqrt{y} J_{\ell}^{\prime}(\sqrt{y})-\sqrt{x} J_{\ell}^{\prime}(\sqrt{x}) J_{\ell}(\sqrt{y})}{2(x-y)}
$$

The probability that there are no eigenvalues on the interval $[0, s]$

$$
E(0 ; s)=\operatorname{det}(1-K)_{[0, s]}=1+\sum_{n \geq 1} \frac{(-1)^{n}}{n!} \int_{0}^{s} d x_{1} \ldots d x_{n} \operatorname{det}\left\|K\left(x_{i}, x_{j}\right)\right\|_{1 \leq i, j \leq n}
$$

Fredholm determinant of the integral operator: Sinc (bulk), Airy (soft edge) and Bessel (hard edge) ${ }^{-\mathrm{p} .5 / 20}$

Bessel kernel

Tracy-Widom distribution close to the hard edge

$$
E(0, s)=\operatorname{det}\left(1-K_{\text {Bessel }}\right)_{[0, s]}=\exp \left(-\frac{1}{4} \int_{0}^{s} d x \log (s / x) Q^{2}(x)\right)
$$

$Q(s)$ satisfies Painlevé V differential equation
Dependence of the probability $E(0, s)$ on the interval length s

Asymptotics of $E(0, s)$ at small and large s

$$
\begin{aligned}
& E(0, s) \stackrel{s \leqq 1}{=} 1-\frac{(s / 4)^{\ell+1}}{\Gamma^{2}(\ell+2)}+\ldots \\
& E(0, s) \stackrel{s \gg 1}{\cong} \exp \left(-s / 4-\frac{\ell^{2}}{4} \log s+\frac{\ell}{8} s^{-1 / 2}+\ldots\right)
\end{aligned}
$$

Remarkably similar to weak/strong coupling expansion in gauge theory for $s \sim \sqrt{\lambda}$

Bessel kernel at finite temperature

$$
K_{\ell}(x, y)=\sum_{n \geq 1} \phi_{n}(x) \phi_{n}(y) \chi\left(\frac{y}{2 g}\right), \quad \quad \phi_{n}(x)=\sqrt{2 n+\ell-1} \frac{J_{2 n+\ell-1}(\sqrt{x})}{\sqrt{x}}
$$

Can be represented by a semi-infinite matrix

$$
\begin{aligned}
& \int_{0}^{\infty} d y K_{\ell}(x, y) \phi_{n}(x)=K_{n m} \phi_{m}(x) \\
& K_{n m}=2(-1)^{n+m} \sqrt{(2 n+\ell-1)(2 m+\ell-1)} \int_{0}^{\infty} \frac{d x}{x} J_{2 n+\ell-1}(x) J_{2 m+\ell-1}(x) \chi\left(\frac{x}{2 g}\right)
\end{aligned}
$$

$\chi(x)$ is the symbol of the Bessel operator

$$
\operatorname{det}\left(1-\mathbf{K}_{\chi}\right)=\left.\operatorname{det}\left(\delta_{n m}-K_{n m}\right)\right|_{n, m \geq 1}
$$

\checkmark For $\chi(x)=\theta(1-x)$ coincides with the Tracy-Widom distribution $E(0, s)$ for $s=(2 g)^{2}$
\checkmark Finite-temperature generalization: $\chi(x)=1 /\left(1+e^{\frac{x-\mu}{T}}\right)$
\checkmark In supersymmetric gauge theories we encounter symbol of the form

$$
\chi_{\mathrm{loc}}(x)=-\frac{1}{\sinh ^{2}(x / 2)}, \quad \quad \chi_{\mathrm{oct}}(x)=\frac{\cosh y+\cosh \xi}{\cosh y+\cosh \sqrt{x^{2}+\xi^{2}}}
$$

Free energy in $\mathcal{N}=2$ super Yang-Mills theory

$\checkmark \mathcal{N}=2$ supersymmetric Yang-Mills theory with gauge group $S U(N)$ coupled to matter multiplets in rank-2 symmetric ($N_{S}=1$) and anti-symmetric ($N_{A}=1$) representations

The beta function vanishes $\beta_{0}=2 N-N_{S}(N+2)-N_{A}(N-2)=0$,
\checkmark The partition function on sphere S^{4} is given by a matrix integral

$$
Z_{S^{4}}=e^{-F}=\int d a e^{-\frac{8 \pi^{2} N}{\lambda} \operatorname{tr} a^{2}}\left|Z_{1-\mathrm{loop}}(a) Z_{\text {inst }}(a)\right|^{2}
$$

Non-perturbative instanton contribution $Z_{\text {inst }}(a)$ is exponentially small at large N
\checkmark Perturbative corrections $Z_{1-\mathrm{loop}}(a)=\exp \left(-S_{\text {int }}(a)\right)$ only come from one loop

$$
\begin{aligned}
S_{\mathrm{int}}(a) & =\sum_{i, j}\left[\log H\left(\lambda_{i}+\lambda_{j}\right)-\log H\left(\lambda_{i}-\lambda_{j}\right)\right] \quad\left(\lambda_{i} \text { are eigenvalues of } a\right) \\
& =2 \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n+1} \zeta_{2 n+1} \sum_{p=0}^{n}\binom{2 n+2}{2 p+1} \operatorname{tr} a^{2 p+1} \operatorname{tr} a^{2(n-p)+1} \\
H(x) & =\prod_{n=1}^{\infty}\left(1+\frac{x^{2}}{n^{2}}\right)^{n} e^{-\frac{x^{2}}{n}}=\exp \left(\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n+1} \zeta_{2 n+1} x^{2 n+2}\right)
\end{aligned}
$$

Matrix model with double-trace interaction

Large N expansion

$$
e^{-F}=\left(\frac{8 \pi^{2}}{\lambda}\right)^{-\left(N^{2}-1\right) / 2} \int d a \exp \left(-N \operatorname{tr} a^{2}+\frac{1}{2} \sum_{k, n} C_{k n} O_{2 k+1} O_{2 n+1}\right)
$$

The interaction term is a sum over double traces $O_{k}=\operatorname{tr} a^{k}$ with the couplings

$$
C_{k n}=4 \frac{(-1)^{k+n+1}}{k+n+1} \zeta_{2(k+n)+1}\binom{2(k+n+1)}{2 k+1}\left(\frac{\lambda}{8 \pi^{2}}\right)^{k+n+1}
$$

Large N expansion

$$
F=N^{2} F_{0}(\lambda)+F_{1}(\lambda)+F_{2}(\lambda) / N^{2}+\ldots
$$

The interaction term does not contribute to F_{0}

Cylinders $\left.Q_{k n}=\begin{array}{l}k \\ \vdots \\ \vdots \\ \vdots\end{array}\right)=\left\langle\operatorname{tr} a^{2 k+1} \operatorname{tr} a^{2 n+1}\right\rangle_{\mathrm{GUE}}$ are glued together with the weight $C_{k n}$

Relation to Bessel kernel

Explicit expressions for semi-infinite matrices

$$
\begin{aligned}
& Q_{k n}=\frac{2 \beta_{k} \beta_{n}}{k+n+1}+O\left(1 / N^{2}\right), \quad \beta_{n}=\frac{2^{n} n \Gamma\left(n+\frac{3}{2}\right)}{\sqrt{\pi} \Gamma(n+2)} \\
& C_{k n}=4 \frac{(-1)^{k+n+1}}{k+n+1} \zeta_{2(k+n)+1}\binom{2(k+n+1)}{2 k+1}\left(\frac{\lambda}{8 \pi^{2}}\right)^{k+n+1}
\end{aligned}
$$

The matrix $(Q C)$ is related to the Bessel kernel by a similarity transformation
[Beccaria,Billò,Galvagno,Hasan,Lerda]

$$
\begin{aligned}
K_{n m} & =\left(U^{-1} Q C U\right)_{n m} \\
& =2(-1)^{n+m} \sqrt{2 n+1} \sqrt{2 m+1} \int_{0}^{\infty} \frac{d t}{t} J_{2 n+1}(t) J_{2 m+1}(t) \chi\left(\frac{x}{2 g}\right)
\end{aligned}
$$

Special form of the symbol

$$
\chi(x)=-\frac{1}{\sinh ^{2}(x / 2)}, \quad g=\frac{\sqrt{\lambda}}{4 \pi}
$$

The free energy coincides with the Tracy-Widom distribution at the hard edge for $\ell=2$

$$
F_{1}=\frac{1}{2} \log \operatorname{det}(1-Q C)=\frac{1}{2} \operatorname{tr} \log \left(1-\mathbf{K}_{\chi}\right)
$$

Correlation functions in $\mathcal{N}=4$ SYM

\checkmark Half-BPS operators

$$
O_{1}=\operatorname{tr}\left(Z^{K / 2} \bar{X}^{K / 2}\right)+\text { permutations }, \quad O_{2}=\operatorname{tr}\left(X^{K}\right), \quad O_{3}=\operatorname{tr}\left(\bar{Z}^{K}\right)
$$

Exact scaling dimension (R-charge) $\Delta=K$

Two- and three-point functions are protected
\checkmark "Simplest" four-point function

$$
\left\langle O_{1}\left(x_{1}\right) O_{2}\left(x_{2}\right) O_{1}\left(x_{3}\right) O_{3}\left(x_{4}\right)\right\rangle=\frac{\mathcal{G}_{K}(z, \bar{z})}{\left(x_{12}^{2} x_{23}^{2} x_{34}^{2} x_{41}^{2}\right)^{K / 2}}
$$

Depends on two cross ratios and 't Hooft coupling $g^{2}=g_{\mathrm{YM}}^{2} N_{c} /(4 \pi)^{2}$

$$
\frac{x_{12}^{2} x_{34}^{2}}{x_{13}^{2} x_{24}^{2}}=z \bar{z}, \quad \frac{x_{23}^{2} x_{41}^{2}}{x_{13}^{2} x_{24}^{2}}=(1-z)(1-\bar{z})
$$

\checkmark Examine $\mathcal{G}_{K}(z, \bar{z})$ in the limit $K \rightarrow \infty$ (infinitely heavy operators) with g^{2} kept fixed

Weak coupling expansion

$$
\lim _{K \rightarrow \infty} \mathcal{G}_{K}=[\mathbb{O}(z, \bar{z})]^{2}
$$

$\mathbb{O}(z, \bar{z})$ is a multilinear combination of ladder integrals

$$
\begin{aligned}
\mathbb{O}(z, \bar{z}) & =1+g^{2} f_{1}-2 g^{4} f_{2}+6 g^{6} f_{3}+g^{8}\left(-20 f_{4}-\frac{1}{2} f_{2}^{2}+f_{1} f_{3}\right)+\ldots \\
& =1+\sum_{\ell \geq 1}\left(g^{2}\right)^{\ell} \times \sum_{i_{1}+\cdots+i_{n}=\ell} d_{i_{1} \ldots i_{n}} f_{i_{1}} \ldots f_{i_{n}}
\end{aligned}
$$

The expansion coefficients $d_{i_{1} \ldots i_{n}}$ can be found to all loops from different OPE limits of \mathcal{G}_{K}
Ladder integrals

The weak coupling expansion can be resummed to all orders in the coupling [Kostov,Petkova,Serban]

Relation to Bessel kernel

$$
\mathbb{O}(z, \bar{z})=\exp \left[-\frac{1}{2} \sum_{n \geq 1} \operatorname{tr}(C H)^{n}\right]=\sqrt{\operatorname{det}(1-C H)}
$$

Semi-infinite matrices

$$
\begin{aligned}
& H_{n m}=\frac{g}{2 i} \int_{|\xi|}^{\infty} d t \frac{\left(i \sqrt{\frac{t+\xi}{t-\xi}}\right)^{m-n}-\left(i \sqrt{\frac{t+\xi}{t-\xi}}\right)^{n-m}}{\cosh y+\cosh t} \underbrace{J_{m}\left(2 g \sqrt{t^{2}-\xi^{2}}\right)}_{\text {Bessel function }} J_{n}\left(2 g \sqrt{t^{2}-\xi^{2}}\right) \\
& C_{n m}=2(\cosh y+1)\left(\delta_{n+1, m}-\delta_{n, m+1}\right),
\end{aligned}
$$

Kinematical variables : $\quad z=-\mathrm{e}^{-y-\xi}, \quad \bar{z}=-\mathrm{e}^{+y-\xi}$
Similarity transformation

$$
\begin{aligned}
K_{n m} & =\left(\Omega^{-1} C H \Omega\right)_{n m} \\
& =2(-1)^{n+m} \sqrt{2 n+1} \sqrt{2 m+1} \int_{0}^{\infty} \frac{d t}{t} J_{2 n+1}(t) J_{2 m+1}(t) \chi_{\text {oct }}\left(\frac{x}{2 g}\right)
\end{aligned}
$$

$\mathbb{O}(z, \bar{z})$ coincides with the Tracy-Widom distribution for $\ell=0$ and the symbol

$$
\chi_{\mathrm{oct}}\left(\frac{x}{2 g}\right)=\frac{\cosh y+\cosh \xi}{\cosh y+\cosh \left(\sqrt{x /(2 g)^{2}+\xi^{2}}\right)} \quad \text { depends on } g, y, \xi
$$

Tracy-Widom distribution in super Yang-Mills theories

Different observables in SYM theories are given by the Tracy-Widom distribution $\operatorname{det}\left(1-\mathbf{K}_{\chi}\right)$
Choice of the observable fixes the form of the symbol:
\checkmark Free energy of $\mathcal{N}=2$ SYM

$$
\chi(x)=-\frac{1}{\sinh ^{2}(x / 2)}
$$

\checkmark Four-point correlator in $\mathcal{N}=4 \mathrm{SYM}$

$$
\chi(x)=\frac{\cosh y+\cosh \xi}{\cosh y+\cosh \left(\sqrt{x+\xi^{2}}\right)}
$$

\checkmark Circular Wilson loop

$$
\chi(x)=-\frac{4}{x^{2}}
$$

The coupling constant defines the interval length in the TW distribution $s \sim g^{2}$
\checkmark Weak coupling expansion is easy

$$
\log \operatorname{det}\left(1-\mathbf{K}_{\chi}\right)=-\operatorname{tr} \mathbf{K}_{\chi}-\frac{1}{2} \operatorname{tr}\left(\mathbf{K}_{\chi}^{2}\right)+\cdots=c_{1} g^{2}+c_{2} g^{4}+\ldots
$$

\checkmark Strong coupling expansion is hard

Szegő-Akhiezer-Kac formula

\checkmark Asymptotic behaviour for sufficiently smooth symbol $\chi(z)$

$$
\begin{aligned}
& \operatorname{det}\left(1-\mathbf{K}_{\chi}\right)=\mathrm{e}^{-g A_{0}+B+O(1 / g)} \quad \text { SAK formula (1915-1966) } \\
& A_{0}=-2 \widetilde{\psi}(0), \quad B=\frac{1}{2} \int_{0}^{\infty} d k k(\widetilde{\psi}(k))^{2} \\
& \widetilde{\psi}(k)=\int_{0}^{\infty} \frac{d z}{\pi} \cos (k z) \log (1-\chi(z))
\end{aligned}
$$

B diverges for $\chi(z) \sim 1-z^{2 \beta}$ or $\widetilde{\psi}(k) \sim-\beta / k$ at large k
Fisher-Hartwig singularity
\checkmark The SAK formula for the Bessel kernel with Fisher-Hartwig singularity has not been derived yet
\checkmark Our conjecture

$$
\begin{aligned}
& \operatorname{det}\left(1-\mathbf{K}_{\chi}\right)=\mathrm{e}^{-g A_{0}+A_{1} \log g+B^{\prime}+O(1 / g)} \\
& A_{1}=\frac{1}{2} \beta^{2} \\
& B^{\prime}=\frac{1}{2} \int_{0}^{\infty} d k\left[k(\widetilde{\psi}(k))^{2}-\beta^{2} \frac{1-\mathrm{e}^{-k}}{k}\right]+\frac{\beta}{2} \log (2 \pi)-\log G(1+\beta),
\end{aligned}
$$

Power suppressed $O(1 / g)$ corrections are determined using the method of differential equations

Tracy-Widom distribution at strong coupling

\checkmark Strong coupling expansion:

$$
\log \operatorname{det}\left(1-\mathbf{K}_{\chi}\right)=\underbrace{-g A_{0}+A_{1} \log g+B}_{\text {SAK formula }}+\frac{A_{2}}{4 g}+\frac{A_{3}}{12 g^{2}}+\frac{A_{4}}{24 g^{3}}+\ldots
$$

\checkmark Exact expressions for the expansion coefficients

$$
\begin{array}{ll}
A_{0}=2 I_{0}, & A_{1}=\frac{1}{2} \\
A_{2}=-\frac{3 I_{1}}{4}, & A_{3}=-\frac{9 I_{1}^{2}}{16} \\
A_{4}=-\frac{3 I_{1}^{3}}{8}+\frac{15 I_{2}}{128}, & A_{5}=-\frac{15 I_{1}^{4}}{64}+\frac{75 I_{1} I_{2}}{256},
\end{array}
$$

Dependence on symbol (=choice of observable) enters through a profile function

$$
I_{n}(y, \xi)=\int_{0}^{\infty} \frac{d z}{\pi} \frac{\left(z^{-1} \partial_{z}\right)^{n}}{(2 n-1)!!} z \partial_{z} \log (1-\chi(z))
$$

A_{1} is universal, generated by the Fisher-Hartwig singularity
B is the Dyson-Widom constant

Towards precision holography

Strong coupling expansion of the octagon

$$
\mathbb{O}=\mathrm{e}^{-g A_{0}+A_{1} \log g+B+\frac{A_{2}}{4 g}+\frac{A_{3}}{12 g^{2}}+\frac{A_{4}}{24 g^{3}}+\ldots}
$$

Scattering amplitude of four closed strings on $\mathrm{AdS}_{5} \times \mathrm{S}^{5}$
[Bargheer, Coronado, Vieira]

[picture from 1909.04077]
$\left.\begin{array}{l}A_{0} \text { - minimal area of a string that ends on four BMN geodesics } \\ A_{1}, B \text { - quadratic fluctuations }\end{array}\right\}$ Have not been computed so far
... but we know the exact expressions for A_{0}, A, B, \ldots from integrability
This hints at a hidden simplicity of holographic description

Conclusions and open questions

Various quantities (free energy, correlation functions, Wilson loop) in different 4d super Yang-Mills theories are expressed in terms of the same (temperature dependent) Tracy-Widom distribution

This relation is powerful enough to predict the dependence on 't Hooft coupling
\checkmark Who ordered this universality?
\checkmark What is the reason why the Bessel kernel appears in all cases?
\checkmark How to reproduce the strong coupling expansion from holography?

Thank you for your attention!

Application to free energy in $\mathcal{N}=2$ SYM

$$
F=\frac{1}{2} \log \operatorname{det}\left(1-\mathbf{K}_{\chi}\right), \quad \chi(x)=-\frac{1}{\sinh ^{2}(x / 2)}
$$

\checkmark Weak coupling expansion in $\widehat{\lambda}=\lambda /\left(8 \pi^{2}\right)$

$$
F=5 \zeta_{5} \widehat{\lambda}^{3}-\frac{105}{2} \zeta_{7} \widehat{\lambda}^{4}+441 \zeta_{9} \widehat{\lambda}^{5}-\left(25 \zeta_{5}^{2}+3465 \zeta_{11}\right) \widehat{\lambda}^{6}+\left(525 \zeta_{5} \zeta_{7}+\frac{212355 \zeta_{13}}{8}\right) \widehat{\lambda}^{7}+\ldots
$$

\checkmark Strong coupling expansion in $1 / \sqrt{\lambda}$

$$
\begin{aligned}
F & =\frac{1}{8} \lambda^{1 / 2}-\frac{3}{8} \log \lambda-3 \log \mathrm{~A}+\frac{1}{4}-\frac{11}{12} \log 2+\frac{3}{4} \log (4 \pi) \\
& +\frac{3}{32} \log \left(\lambda^{\prime} / \lambda\right)-\frac{15 \zeta_{3}}{64 \lambda^{\prime 3 / 2}}-\frac{945 \zeta_{5}}{512 \lambda^{\prime 5 / 2}}-\frac{765 \zeta_{3}^{2}}{128 \lambda^{\prime 3}}+\ldots \\
& -\frac{i}{4} \lambda^{1 / 2} \mathrm{e}^{-\sqrt{\lambda}}\left(1+O\left(\lambda^{-1 / 2}\right)\right), \quad \lambda^{\prime 1 / 2}=\lambda^{1 / 2}-4 \log 2 .
\end{aligned}
$$

Series in $1 / \sqrt{\lambda}$ has factorially growing coefficients
Borel singularities are in one-to-one correspondence with nonperturbative corrections

