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Very special year 2023

✔ 50 years of discovery of asymptotic freedom in Quantum Chromodynamics

✔ QCD has had tremendous success in describing the strong interaction at high energy
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✔ Understanding quark confinement remains one of the most outstanding problem in QCD

The structure of nuclear matter remains elusive



- p. 3/22

95 years of Heisenberg spin chain model

✔ Heisenberg antiferromagnetic XXX spin 1/2 chain Heisenberg, 1928

H
XXX

= −
L∑

n=1

~Sn · ~Sn+1

Exact solution can be found using Bethe Ansatz Bethe, 1931

✔ Integrable models – family of solvable quantum field-theoretical models in 2 dimensions

Infinitely many conserved charges → Elastic scattering → Factorizable S-matrices

✔ Two-particle S-matrix satisfies Yang-Baxter equation
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Many-particle S–matrix is a product of 2-particle S–matrices

✔ What is the relation between 2-dim integrable models and QCD?
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Strings from Quantum Chromo Dynamics

✔ The strength of the interaction decreases
at short distances – asymptotic freedom

At large distances quark and gluons are
confined into hadrons (meson, baryons)

What is an effective string theory of QCD flux tubes? We don’t know yet

✔ String description naturally appears in large Nc limit

+
1

N2
c

+
1

N4
c

+ · · ·=

Dense Feynman diagrams = Sum over 2d Riemann surfaces (string world-sheet)

✔ If QCD at large distances is described by a string theory, this should have some manifestation at

short distances =⇒ look for hidden symmetries
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What are the symmetries of QCD?

✔ QCD = (3+1)-dimensional Yang-Mills field theory with the SU(Nc = 3) gauge group

✔ Symmetry of the classical theory:

✗ gauge symmetry,

✗ chiral symmetry,

✗ conformal symmetry, . . .

✔ Many of classical symmetries are broken on the quantum level

Q: Could it be that QCD possesses some hidden symmetry which

(i) does not exhibit itself as a symmetry of the classical Lagrangian

(ii) is only revealed on the quantum level?

Example: Integrability in AdS/CFT correspondence

N = 4 SYM at strong coupling ⇐⇒ type IIB string on the AdS5 × S5 background

A: Yes! QCD at high energy is intrinsically related to completely integrable models
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Scattering amplitudes in QCD

Tree gluon scattering amplitudes
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✔ The same in QCD and in maximally supersymmetric Yang-Mills theory

Number of external gluons 4 5 6 7 8 9 10

Number of ‘tree’ diagrams 4 25 220 2485 34300 559405 10525900

✔ Number of diagrams grows factorially for large number of external gluons

... but the final expression for tree amplitudes looks remarkably simple Parke-Taylor’86

Atree
n (1+2+3− . . . n−

︸ ︷︷ ︸
MHV amplitude

) =
〈12〉4

〈12〉〈23〉 . . . 〈n1〉 ,
[
spinor notations: 〈ij〉 = λα(pi)λα(pj)

]

✔ What is the reason for remarkable simplicity of amplitudes? ‘Dual conformal’ symmetry

It is powerful enough to fix all tree level gluon amplitudes
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Hard processes in QCD

Electromagnetic form factor of proton at large Q2

PA PB

γ∗(Q)

ΨA ΨBH

= ΨA ⊗H ⊗ΨB

Hadrons in the infinite momentum frame ≈ system of quasi-free partons with virtuality µ2

P

x1
x2

xn

= Ψ(x1, . . . , xn;µ2).
.
.

, 0 ≤ xk ≤ 1 ,
∑

k

xk = 1

︸ ︷︷ ︸
momentum fractions

QCD factorization (scale separation)

F (Q2) =
1

(Q2)n−1

∫ 1

0
[dx][dy] ΨA({x};µ2)H({x, y}, Q2/µ2, αs(µ

2))ΨB({y};µ2)

Distribution amplitudes are nonperturbative, hard function is perturbative

Perturbative QCD can be used to predict Q2−dependence (= scaling violation)
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Hadron distribution amplitudes

✔ Nonperturbative definition [Brodsky, Lepage’79],[Efremov,Radyushkin’79]

〈P |Φ(nz1) . . .Φ(nzL)|0〉µ2
n2=0
=

∫ 1

0
[dx] e−i(Pn)

∑
i zixiΨ(x1, . . . , xL;µ

2)

Correlation functions of parton fields on the light front = Sum of plane waves

〈P | |0〉

x1

x2

xL

.

.

.

Φ(nz1)

Φ(nz2)

Φ(nzL)

Parton fields Φ = {quark, gluon} connected by gauge links

✔ Moments of distribution amplitudes ⇐⇒ local operators:

Ψ̃k1...kL =

∫
[dx]xk11 . . . x

kL
L Ψ(x1, . . . , xL;µ

2) = 〈P |(Dk1+ Φ) . . . (D
kL
+ Φ)|0〉µ2

✔ Scale dependence of the distribution amplitudes

µ
d

dµ
Ψ̃k1...kL =

∑

mj

V (ki|mj)︸ ︷︷ ︸
mixing matrix

Ψ̃m1...mL
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Conventional QCD approach

✔ Diagonalize the mixing matrix and find the spectrum of anomalous dimensions

✔ Example: helicity−3/2 baryon distribution amplitude [q = q↑(x) + q↓(x), q↑(↓) = 1±γ5
2

q]

q↑(z1n)q
↑(z2n)q

↑(z3n) −→ (Dk1+ q↑) (Dk2+ q↑) q↑(0) + [total derivatives]

✗ Mixing matrix:

∑

n1+n2=N

V (k1, k2|n1, n2)Ψ
(ℓ)
n1,n2

= γ
(ℓ)
3/2

(N)Ψ
(ℓ)
k1,k2

, (ℓ = 0, . . . , N)

✗ Rich spectrum of anomalous dimensions:
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• (Almost) all levels are double degenerate

• Where does this structure come from?

Conformal symmetry + Integrability!
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Integrability on the light-cone

✔ Callan-Symanzik equation (helicity− 3
2

baryon operator B ≡ q↑(z1n)q↑(z2n)q↑(z3n))

µ
d

dµ
B(z1, z2, z3) = [H · B](z1, z2, z3),

✔ One-loop dilatation operator:

H =

z1z1z1

z2z2z2

z3z3z3

+O(α2
s)

✔ Two-particle structure:

H =
αsNc

2π
[H12 +H23 +H13] +O(α2

s)

Displaces quark fields along the light-cone

H12B(z1, z2, z3) =

∫ 1

0

dαα

1− α

[
B(z1 − αz12, z2, z3) +B(z1, z2 + αz12, z3)− 2B(z1, z2, z3)

]

✔ QCD evolution = Quantum mechanics on the light cone

H = 3 particle Hamiltonian with nearest neighbour interaction
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Conformal symmetry on the light-cone

✔ QCD Lagrangian is invariant under conformal transformations

✔ It is broken in QCD but the conformal anomaly affects the anomalous dimensions starting from
two loops only

✔ One-loop dilatation operator in QCD inherits conformal symmetry of the classical Lagrangian!

✔ Full conformal symmetry reduces on the light-cone xµ = znµ (n2 = 0) to its SL(2) subgroup:

z → z′ =
az + b

cz + d
, q(zn) → q′(zn) = q

(
az + b

cz + d

)
(cz + d)−2

Conformal generators:

S− = − d

dz
, S+ = z2

d

dz
+ 2z , S0 = z

d

dz
+ 1

Think about them as spin operators [Sα, Sβ ] = iǫαβγSγ

✔ Dilatation operator is the spin-chain Hamiltonian

H = f(~S1 · ~S2) + f(~S2 · ~S3) + f(~S3 · ~S1)

z1 z2 z3

~S1
~S2

~S3

Coincides with the Heisenberg SL(2;R) spin chain Hamiltonian!
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Integrability on the light-cone (II)

✔ QCD anomalous dimensions are eigenvalues of the dilatation operator

HΨN (z1, z2, z3) = γN ΨN (z1, z2, z3)

✔ SL(2) invariant form of the dilatation operator

H =
αsNc

π
[H12 +H23 +H13] , H12 = ψ(J12)︸ ︷︷ ︸

Euler’s ψ−function

− ψ(1)

Two-particle conformal spin

J
2
12 = J12(J12 − 1) ≡ (~S1 + ~S2)

2

✔ One-loop dilatation operator ≡ Hamiltonian of the SL(2,R) Heisenberg spin chain

✗ Number of sites = number of quark operators

✗ Spin operators = Generators of the SL(2,R) ‘collinear’ group

✔ The spectrum of anomalous dimensions can be found exactly using the Bethe Ansatz

γN =
αsNc

π

N∑

k=1

1

λ2k + 1
,

(
λk + i

λk − i

)3

=
N∏

j 6=k

λk − λj − i

λk − λj + i

{λ1, . . . , λN} = Bethe roots
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Integrable “zoo” in multi-color QCD

✔ Interaction between partons with the aligned helicities (quarks q↑, gluons G↑) is integrable

One-loop dilatation operator H = Hamiltonian of a noncompact SL(2,R) Heisenberg magnet:

✗ Three-quark states:

[q↑(z1)q
↑(z2)q

↑(z3)] =⇒ closed spin jq = 1 chain

✗ Multi-gluon states:

[G↑(z1)G
↑(z2)...G

↑(zL)] =⇒ closed spin jg = 3/2 chain

✗ Antiquark-Glue-Quark states:

[q̄(z1)G
↑(z2)...G

↑(zL−1)q(zL)] =⇒ open inhomogeneous spin chain

✔ Integrability is broken in the ‘mixed’ helicity sectors (ex: helicity−1/2 states [q↑q↓q↑])

✗ Symmetry breaking terms generate a mass gap in the spectrum of γ(N) [scalar diquarks?]

✗ ... but they do not affect large N asymptotics

γ(N) = 2 Γcusp(αs)︸ ︷︷ ︸
cusp anom.dim.

lnN +N0 × (nonintegrable terms)

✔ What happens in supersymmetric cousins of QCD?

Supersymmetry enhances QCD integrability and extends it to a larger class of Wilson operators
as one goes from N = 0 to N = 4 SYM
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Scattering in QCD at high-energy (Regge asymptotics)

✔ Regge phenomena in strong interactions (since 60’s):

σ
AB

(s) =

A

B

Regge
trajectory

=
∑

j

βjA(t)β
j
B(t) sαj(t)−1

Scattering amplitudes grow at high energy s as a power ∼ sαj(t)

✔ Dual model:

= ΣΣ =

x x

x x
j

j j

j
?

Regge trajectories + duality condition = Hadronic string (?)

✔ High-energy asymptotics in QCD: interaction induces large corrections which need to be
resummed to all order of perturbation theory Balitsky-Fadin-Kuraev-Lipatov ’78

σ
AB

(s) =
∑

n=0,1,...

wn
(
g2s ln s

)n ∼ sαP−1
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BFKL Pomeron + Unitarity

• Leading contribution: BFKL Pomeron (λ = g2sNc/(4π
2))

σLO =
∑

rungs

∼ λ2
exp(4 ln 2 · λ ln s)√

λ ln s
∼ s4 ln 2·λ

︸ ︷︷ ︸
violates unitarity

• BFKL Pomeron + Unitarity =⇒ generalized ladder diagrams

∑

N=2,3,..

N....31 2

• Multi-Regge kinematics:
∫
d4k =

∫
dk+dk−

∫
d2k⊥

– strong ordering in the longitudinal momenta y = ln
k+
k
−

y1 ≫ y2 ≫ y3 ≫ ... = “evolution time” in the t−channel

– “random walk” in the transverse momenta

k1,⊥ ∼ k2,⊥ ∼ k3,⊥ ∼ ...

✌ Elastic pair-wise interaction of N = 2, 3, ... particles “living” on the two-dimensional k⊥−plane
and propagating in the “time” y = ln s.

✌ Nontrivial QCD dynamics occurs on the two-dimensional transverse space
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Color-singlet compound gluonic states

✌ The effective QCD Hamiltonian HN has remarkable properties in the multi-color limit:

A(s, t) =

1 N2 ...3

= ∼ exp (yHN ) = sHN

→֒ Elastic scattering of N reggeized gluons

✔ The Bartels-Kwiecinski-Praszalowicz equation ≡ 2-dim Schrödinger equation

HNΨ(~z1, ~z2, ..., ~zN )
︸ ︷︷ ︸

2−dim coordinates

= ENΨ(~z1, ~z2, ..., ~zN )

✔ Ψ(~z1, ~z2, ..., ~zN ) = colour-singlet compound states built from N reggeized gluons

✔ High-energy asymptotics of the scattering amplitudes is governed by the contribution of these
states

A(s, t) ∼ −is
∑

N−gluon
states

(iλ)N sλEN

︸ ︷︷ ︸
Regge behaviour

βN (t)

✔ Intercept = maximal energy EN
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Reggeon Hamiltonian

✔ QM system of N interacting particles “living” on a two-dimensional transverse (x, y)−plane
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= ×

✔ Dynamics in (anti)holomoprhic coordinates zk = xk + iyk and z̄k = z∗k is independent on each

other

HN = Hz + Hz̄ , [Hz ,Hz̄ ] = 0

✔ One-dimensional Hamiltonians describe spin chains

S
(k)
0 = zk∂zk , S

(k)
− = −∂zk , S

(k)
+ = z2k∂zk

with nearest neighbour interaction

Hz =

N∑

k=1

H(Jk,k+1) , H(x) = ψ(x+ 1)− ψ(1)

Coincides with the Heisenberg SL(2;C) spin chain Hamiltonian!
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Integrability of high-energy QCD

✔ Integrable models are QM systems with a finite number of degrees of freedom and the same
number of conserved charges.

✔ QCD is a complex system with infinite number of degrees of freedom which are not integrable
per se.

✔ Integrability emerges as a hidden symmetry of effective QCD dynamics in two different limits:

✗ Scale dependence of multi-particle distribution amplitudes (=dilatation operator)

✗ High-energy (Regge) behaviour of scattering amplitudes

✔ Does the SL(2,R) integrability hold beyond one-loop in which case the conformal symmetry is
broken? Yes, it does!

✔ Integrability is not tied to the conformal symmetry but is connected with the multi-color limit !

✔ Integrability is a general feature of (super) Yang-Mills theories in four dimensions

What is the origin of integrability phenomenon in QCD and 4d gauge theories?

✔ In maximally supersymmetric Yang-Mills theory it can be understood using AdS/CFT
correspondence
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Gauge/string duality

Maximally supersymmetric N = 4 SYM is dual to string theory on AdS5 × S5 background

✔ Strings propagate inside the cylinder

✔ Yang-MIlls theory “lives” at the boundary of the
cylinder

Large Nc limit ⇔ Free strings

Local operators ⇔ String states

Scaling dimensions ⇔ Energies of strings

〈O(x)O(0)〉 = 1

(x2)∆

Surprising correspondence of strongly interacting quantum field theories with gravitational theories:

Strongly coupled maximally

supersymmetric gauge theory
⇐⇒

Weakly coupled ‘dual’ string

theory on anti-de Sitter space
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Integrability in AdS/CFT correspondence

Gauge theory side: 〈O(x)O(0)〉 ∼ 1/(x2)∆(λ)

✔ Operators O(x) ⇔ States of one-dimensional spin chain

✔ Scaling dimensions ∆(λ) ⇔ Energies of the spin-chain Hamiltonian

String theory side:

✔ Excitations of the strings scatter through integrable S-matrix

p1 p2

Scaling dimensions can be found for any ’t Hooft coupling by Bethe Ansatz !

✔ Important example: Twist-2 operators with large spin

Govern scale dependence of quark and gluon distributions (DGLAP evolution)

AdS/CFT prediction

OS = tr
[
F+µD

S
+F+µ

]
+ . . . ⇔ Folded string spinning on AdS

∆S = Energy of spinning string = S + 2Γcusp(λ) logS

Γcusp(λ) is known in N = 4 SYM for any coupling

The same behaviour in QCD (but the cusp anom. dim. is different)
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Summary

✔ High-energy QCD possesses a hidden symmetry which does not exhibit itself as a symmetry of
classical Lagrangian, but is only revealed on the quantum level

✔ The effective QCD dynamics in several important limits is described by completely integrable
systems that prove to be related to the celebrated Heisenberg spin chain and its generalizations

✔ Integrability naturally appears in the AdS/CFT correspondence through symmetries of a string
theory on the AdS background

✔ What is the origin of integrability phenomenon in QCD?

✔ 50 years later QCD remains an active area of ongoing research, with many unsolved problems
and many aspects we would like to understand better
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Thank you for your attention!
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