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( Instabilities (1)

# Until now we have only considered independent
particle motion.

¥ We call this incoherent motion.

r single particle synchrotron/betatron oscillations
 each particle moves independently of all the others

¥ Now we have to consider what happens if all
particles move in phase, coherently, in response to
some excitations

Synchrotron & betatron
oscillations
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( Instabilities (2)

# We cannot ignore interactions between the

charged particles

# They interact with each other in two ways:

Space charge
effects, intfra beam
scattering

+ Direct Coulomb interaction between particles

+ Via the vacuum chamber
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Longitudinal and
transverse beam
instabilities




( Why do Instabilities arise?

% A circulating bunch induces electro magnetic
fields in the vacuum chamber

% These fields act back on the particles in the bunch

# Small perturbations to the bunch motion, change
the induced EM fields

% If this change amplifies the perturbation then we
have an instability
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( Measuring Longitudinal Instabilities

% A circulating bunch creates an image
current in vacuum chamber.
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# The induced image current is the same Size but
has the opposite sign to the bunch
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(Impedance and Wall current (1)

# The vacuum chamber presents an impedance to this
induced wall current (changes of shape, material etc.)

# The image current combined with this impedance

induces a voltage, which in turn affects the charged
particles in the bunch

[(Z(@)x (@) dw = [ E ds
P / C N

N
Impedance & cu{r'en'r = voltage = electric field

Lt

Resistive, inductive, capacitive

rZ=Zr+iZJ
1

Strong frequency
dependence

Real & Imaginary components
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(Impedance and Wall current (2)

# Any change of cross section or material leads to a
finite impedance

# We can describe the vacuum chamber as a series of
cavities

+ Narrow band - High Q resonators - RF Cavities tuned to
some harmonic of the revolution frequency

+ Broad band - Low Q resonators - rest of the machine
% For any cavity two frequencies are important:

r w = Excitation frequency (bunch frequency)

r wg= Resonant frequency of the cavity

# If hw = wgi then the induced voltage will be large and
willW’rh repeated passages of the bunch

his an
intfeger
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( Single bunch Longitudinal Instabilities (1)

# Lets consider:
r A single bunch with a revolution frequency = w
= That this bunch is not centered in the long. Phase Space
= A single high-Q cavity which resonates at wg (wg # hw)

Higher impedance = more

‘ Real Z energy lost in cavity
Lower impedance = less Cavity impedance
energy lost in cavity i /
ho  wr Frequency
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( Single bunch Longitudinal Instabilities (2)

% Lets start a coherent synchrotron oscillation
(above transition)

# The bunch will gain and loose energy/momentum

NN

¥ There will be a decrease and increase in revolution
frequency

# Therefore the bunch will see changing cavity
impedance

¥ Lets consider two cases:

+ First case, consider wy > hw
+ Second case, consider wg < hw
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( Single bunch Longitudinal Instabilities (3)

¥ Case: wg>hw

Lower energy = lose
more energy

4 Real Z

Higher energy = lose

less ener
i \ This is unstable

ho g Frequency

# The cavity tends to increase the energy oscillations
# Now retune cavity so that wg¢ hw
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Single bunch Longitudinal Instabilities (3)

% Case: wg< hw

Lower energy = lose

s Real Z less energy
Higher energy = lose |
more energy This is stable
v
WR he Fr:equency

% This is is known as the ‘Robinson Instability’

% To damp this instability one should retune the
cavity so that wg< hw

R. Steerenberg AXEL - 2023 11



( Robinson Instability (1)

AE # The Robinson Instability is a
14 - single bunch, dipole mode
B oscillation

phase
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phase space
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Robinson Instability (2)

Longitudinal
phase space

Seenona
‘'scope
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\ phase
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Robinson Instability (3)
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phase space
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Robinson Instability (4)
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phase space
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( Robinson Instability (5)
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Frequency = synchrotron frequency
Mode m=1 |

> time
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Higher order modes m=2
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Higher order modes m=2

AE

,Charge
density

2
B

Longitudinal
phase space

Seenona
‘'scope

R. Steerenberg

AXEL - 2023

20



( Higher order modes m=2 ..... (5)

AE

Longitudinal
— phase space

Seenona
‘'scope

,Charge
density

Frequency = 2 X synchrotron

freguency
Mode m=2 |

1i
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( Multi-bunch instabilities (1)

% What if we have more than one bunch in our ring.....?
# Lets take 4 equidistant bunches A, B, C & D

% The field left in the cavity by bunch A alters the
coherent synchrotron oscillation motion of B, which
changes field left by bunch B, which alters bunch
C....1to bunch D, etc...etc..

# Until we get back to bunch A.....

% For 4 bunches there are 4 possible modesyot coupled
bunch longitudinal oscillation
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Multi-bunch instabilities (2)

AE A B C D
il e © © ©
®
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®
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( Multi-bunch instabilities (3)
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( Multi-bunch instabilities (4)
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( Multi-bunch instabilities (5)
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( Multi-bunch instabilities (6)
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( Multi-bunch instabilities (7)
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( Multi-bunch instabilities (8)
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( Multi-bunch instabilities (9)
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( Multi-bunch instabilities (10)

Ad
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Multi-bunch instabilities (11)

# For simplicity assume we have a single cavity which
resonates at the revolution frequency

# With no coherent synchrotron oscillation we have:
A B C D
AE‘

# Lets have a look at the voltage induced in a cavity
by each bunch

phase
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( Multi-bunch instabilities (12)

Bunch A

AE‘
Vv

induced S
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AXEL - 2023 ‘ 33

R. Steerenberg

g @
phase J




|

Multi-bunch instabilities (13)

Bunch B

phase \></
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( Multi-bunch instabilities (14)

Bunch C

A B C D
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( Multi-bunch instabilities (15)

Bunch D
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( Multi-bunch instabilities (16)

A & C induced voltages cancel

A B C D

phase J //

AE‘
Vv /
deuced
phase
37
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( Multi-bunch instabilities (17)

B & D induced voltages cancel
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( Multi-bunch instabilities (18)

All voltages cancel = no residual effect

phasé J
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induced
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phase
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( Multi-bunch instabilities (19)

phase
Lets Introduce an n=1 mode coupled bunch oscillation

B & D induced vo cel
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( Multi-bunch instabilities (20)

phase /

A & C induced voltages do not cancel
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( Multi-bunch instabilities (21)

mduced

- e 7/

This resudual voltage
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( Multi-bunch instabilities (22)
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This residual voltage will accelerate B
and decelerate D
This increase the oscillation amplitude
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( Multi-bunch instabilities (23)

/:f..-

phase

1/4 of a synchrotron
period later

A
A & C induced voltages now cancel
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Multi-bunch instabilities (24)

B & D induced voltages do not cancel
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Multi-bunch instabilities (25)
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Multi-bunch instabilities (26)
( C s oc b
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This residual voltage will accelerate A
and decelerate C
Again = increase the oscillation amplitude
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Multi-bunch instabilities (27)

# Hence the n=1 mode coupled bunch oscillation is
unstable

¥ Not all modes are unstable look at n=3
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( Multi-bunch instabilities (28)

.......... .@-.
- ) ;
>
phase [a ...... -
'}
ifduce
I
phase

Introduce an n=3 mode
coupled bunch oscillation

B & D induced voltages cancel
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( Multi-bunch instabilities (29)
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A & C induced voltages do not cancel
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Multi-bunch instabilities (30)
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Multi-bunch instabilities (31)

induced

‘ ; ),

|
phase //

This residual voltage will accelerate B and decelerate D
=decrease the oscillation amplitude
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( Multi-bunch instabilities on a ‘scope (1)

Tur‘n “1”

“Mountain range display”
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( Multi-bunch instabilities on a ‘scope (2)

Add snapshot images some turns later
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( Multi-bunch instabilities on a ‘scope (3)

AYAVL'
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MLIH‘I bunch instabilities on a ‘scope (4)

AAA
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MulTu bunch instabilities on a ‘scope (5)

AAA
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MulTu bunch instabilities on a ‘scope (6)

ARLY
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MLIH‘I bunch instabilities on a "scope (7)

K
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MLIH‘I bunch instabilities on a ‘scope (8)

AN
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MLIH‘I bunch instabilities on a "scope (9)

MAK
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( Multi-bunch instabilities on a ‘scope (10)
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( Multi-bunch instabilities on a ‘scope (11)
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( Multi-bunch instabilities on a ‘scope (12)
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( Multi-bunch instabilities on a ‘scope (13)
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I(_Mul’ri-bunch instabilities on a “scope (14)
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I(_Mul’ri-bunch instabilities on a “scope (15)
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( Multi-bunch instabilities on a ‘scope (16)

# What mode is this ?
# What is the synchrotron period?
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( Multi-bunch instabilities on a ‘scope (17)

# This is Mode n = 2 One Synchrotron period

AE
— o e e e
phase - e Tedee” ‘ Ap=m
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Possible cures for single bunch modes

# Tune the RF cavities correctly in order to avoid
the Robinson Instability

% Have a phase lock system, this is a feedback on
phase difference between RF and bunch

% Have correct Longitudinal matching

# Radiation damping (Leptons)

# Damp higher order resonant modes in cavities
# Reduce machine impedance as much as possible

R. Steerenberg AXEL - 2023 70



( Possible cures for multi-bunch modes

# Reduce machine impedance as far as possible

# Feedback systems - correct bunch phase errors
with high frequency RF system

# Radiation damping
# Damp higher order resonant modes in cavities
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( Bunch lengthening (1)

# Now we controlled all longitudinal instabilities, but ...

# It seems that we are unable to increase peak bunch
current above a certain level

# The bunch gets longer as we add more particles.

¥ Why..?
# What happens....?

# Lets look at the behaviour of a cavity resonator as we
change the driving frequency.
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( Bunch lengthening (2)

The phase of the response of a resonator depends on the
difference between the driving and the resonant frequencies

® he =

Wgr
a Response lags behind excitation

s+ Real Z
hw<wy

Cavity
impedance

S

Inductive
impedance

Capacitive
impedance

hw=wg

p—
»

Frequency

[Response leads excitation
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( Bunch lengthening (3)

Cavity driven on resonance
hw= wgi = resistive impedance

\%

/\ bunch
fra T

Induced voltage
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( Bunch lengthening (4)

Cavity driven above resonance
hw> wi = capacitive impedance

bunch

Induced voltage

Response leads excitation
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( Bunch lengthening (5)

Cavity driven below resonance
hw< wg = inductive impedance

\%
bunch

/ |

Induced voltage

Response lags behind excitation
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( Bunch lengthening (6)

# In general the Broad Band impedance of the
machine, vacuum pipe etc (other than the cavities)
is inductive

% The bellows etc. represent very high frequency
resonators, which resonate mostly at frequencies

above the bunch spectrum
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( Bunch lengthening (7)

% Since the Broad Band impedance of the machine is
predominantly inductive , the response lags behind
excitation

bunch

e i /
WS |

Add this to the RF voltage
(above transition)
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( Bunch lengthening (8)

RF voltage

Tends to reduce
apparent RF
voltage
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Bunch lengthening (10)

R. Steerenberg

Final RF voltage modifies
the bunch shape
Reduces RF voltage seen
by the bunch

Lengthened bunch

=
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( Questions....,Remarks...?

Multi bunch
instabilities
I . Bunch

lengthening
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