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Normalised Phase Space
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ü By multiplying the y-axis by β the transverse phase space is 
normalised and the ellipse turns into a circle.
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Phase Space & Betatron Tune

ü If we unfold a trajectory of a particle that makes one turn 
in our machine with a tune of Q = 3.333, we get:
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ü This is the same as going 3.333 time 
around on the circle in phase space

ü The net result is 0.333 times around 
the circular trajectory in the 
normalised phase space

ü q is the fractional part of Q
ü So here Q= 3.333 and q = 0.333 2πq
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What is a resonance?

ü After a certain number of turns around the machine the 
phase advance of the betatron oscillation is such that the 
oscillation repeats itself.

ü For example:
ü If the phase advance per turn is 120º then the betatron 

oscillation will repeat itself after 3 turns.
ü This could correspond to Q = 3.333 or 3Q = 10
ü But also Q = 2.333 or 3Q = 7

ü The order of a resonance is defined as ‘n’

n x Q = integer

4



R. Steerenberg AXEL - 2023

Q = 3.333 in more detail

Third order resonant betatron oscillation 
3Q = 10, Q = 3.333, q = 0.333

1st turn

2nd turn

3rd turn
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Q = 3.333 in Phase Space

1st turn

2nd turn

3rd turn

ü Third order resonance on a normalised phase space plot

2πq = 2π/3
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ü It is not possible to construct a perfect machine.
ü Magnets can have imperfections
ü The alignment in the de machine has non zero tolerance.
ü Etc…

ü So, we have to ask ourselves:
ü What will happen to the betatron oscillations due to the different 

field errors.
ü Therefore we need to consider errors in dipoles, quadrupoles, 

sextupoles, etc…

ü We will have a look at the beam behaviour as a function of ‘Q’

ü How is it influenced by these resonant conditions?

Machine imperfections
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ü For Q = 2.00: Oscillation induced by the dipole kick grows on 
each turn and the particle is lost (1st order resonance Q = 2).

Dipole (deflection independent of position)
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Q = 2.00
1st turn

2nd turn

3rd turn

y’b

y

Q = 2.50

ü For Q = 2.50: Oscillation is cancelled out every second turn, 
and therefore the particle motion is stable.

8



R. Steerenberg AXEL - 2023

ü For Q = 2.50: Oscillation induced by the quadrupole kick grows 
on each turn and the particle is lost 

(2nd order resonance 2Q = 5)

Quadrupole (deflection ∝ position)

ü For Q = 2.33: Oscillation is cancelled out every third turn, 
and therefore the particle motion is stable.

Q = 2.50 1st turn

2nd turn

3rd turn

4th turn

Q = 2.33
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ü For Q = 2.33: Oscillation induced by the sextupole kick grows 
on each turn and the particle is lost 

(3rd order resonance 3Q = 7)

Sextupole (deflection ∝ position2)

ü For Q = 2.25: Oscillation is cancelled out every fourth turn, 
and therefore the particle motion is stable.

1st turn

2nd turn

3rd turn

4th turn

Q = 2.33 Q = 2.25

5th turn
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ü Let us try to find a mathematical expression for the amplitude 
growth in the case of a quadrupole error:

More rigorous approach (1)

2πQ = phase angle over 1 turn = θ
Δβy’ = kick
a = old amplitude
Δa = change in amplitude
2πΔQ = change in phase

y does not change at the kick

y = a cos(𝜃)

In a quadrupole Δy’ = lky

So we have:

Δa = βΔy’ sin(𝜃) = lβ sin(𝜃) a k cos(𝜃)

Only if 2πΔQ is small
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More rigorous approach (2)
ü So we have: ∆a = l·𝛽·sin(𝜃) a·k·cos(𝜃) )2sin(

2
qbk

a
a 
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D
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ü Each turn θ advances by 2πQ
ü On the nth turn θ = θ + 2nπQ 

ü So, for q = 0.5 the phase term, 2(θ + 2nπQ) is constant:

ü Over many turns: ( )( )å
¥

=
+=

D
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22sin
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( )( ) ¥=+å
¥
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n
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and thus:

Sin(θ)Cos(θ) = 1/2 Sin (2θ)

This term will be ‘zero’ as it decomposes in Sin and 
Cos terms and will give a series of + and – that cancel 

out in all cases where the fractional tune q ≠ 0.5 
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ü In this case the amplitude will grow continuously 
until the particles are lost.

ü Therefore we conclude as before that:
quadrupoles excite 2nd order resonances for q=0.5

ü Thus for Q = 0.5, 1.5, 2.5, 3.5,…etc……

More rigorous approach (3)
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ü Let us now look at the phase θ for the same quadrupole error:

More rigorous approach (4)

y’b

y

a

Dby’

Da2πDQ

θ
2πQ = phase angle over 1 turn = θ
Δβy’ = kick
a = old amplitude
Δa = change in amplitude

2πΔQ = change in phase
y does not change at the kick

y = a cos(θ)
In a quadrupole Δy’ = lky

a
yQ qbp cos)'(2 D
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2
1 qqb
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×××××
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θ
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2πΔQ << Therefore Sin(2πΔQ) ≈ 2πΔQ 
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More rigorous approach (5)

ü Each turn θ advances by 2πQ
ü On the nth turn θ = θ + 2nπQ 

ü Over many turns: ( )( )[ ]å
¥

=
++=D
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122cos
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‘zero’

ü So we have:
a
kalQ )cos()cos(

2
1 qqb
p

×××××
×=D

)1)2(cos(
4
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+××××=D qb
p

klQ , which is correct for the 1st turn

ü Averaging over many turns: dskQ ..
4
1 b
p

=D

ü Since: we can rewrite this as:
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Stopband

ü This width is called the stopband of the resonance

ü , which is the expression for the change in 
Q due to a quadrupole… (fortunately !!!)

dskQ ..
4
1 b
p

=D

ü But note that Q changes slightly on each turn

)1)2(cos(
4
1

+××=D qb
p

klQ

Related to Q

Max variation 0 to 2

ü Q has a range of values varying by:
p
b
2
k

ü So even if q is not exactly 0.5, it must not be too close, or at 
some point it will find itself at exactly 0.5 and ‘lock on’ to the 
resonant condition.
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ü We can apply the same arguments for a sextupole:

Sextupole kick

and thus2' kyy =D cos' 22 qkay =Dü For a sextupole

[ ]qqbqqb cos3cos
2

cossin 2 +==
D kaka
a
a 
ü We get :

ü Summing over many turns gives:
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a pqpqb

3rd order resonance term 1st order resonance 
term

ü Sextupole excite 1st and 3rd order resonance

q = 0 q = 0.33
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ü We can apply the same arguments for an octupole:

Octupole kick

and thus3' kyy =D q33 cos' kay =Dü For an octupole

ü Octupolar errors excite 2nd and 4th order resonance and are 
very important for larger amplitude particles. 

q = 0.5 q = 0.25

ü We get : qqb 32 cossinka
a
a
=

D

ü Summing over many turns gives:

∝ a2(cos 4(𝜃+2pnQ) + cos 2(𝜃+2pnQ))
a
aD

Amplitude squared

4th order resonance term

2nd order resonance 
term

Can restrict dynamic 
aperture
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ü Quadrupoles excite 2nd order resonances
ü Sextupoles excite 1st and 3rd order resonances
ü Octupoles excite 2nd and 4th order resonances

Resonance summary

ü This is true for small amplitude particles and low strength 
excitations

ü However, for stronger excitations sextupoles will excite higher 
order resonance’s (non-linear)
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Coupling

ü Coupling is a phenomena, which converts betatron 
motion from one plane (horizontal or vertical) into 
motion in the other plane.

ü Fields that will excite coupling  are:

ü Skew quadrupoles, which are normal quadrupoles, but tilted 
by 45º about it’s longitudinal axis.

ü Solenoidal (longitudinal magnetic field)
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Skew Quadrupole
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Magnetic field

Like a normal quadrupole, 
but then tilted by 45º
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Solenoid; longitudinal field (2)

Magnetic field
Particle trajectory

Beam axis

Transverse velocity 
component
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Solenoid; longitudinal field (2)

Above:
The LPI solenoid that was used for the 
initial focusing of the positrons. 
It was pulsed with a current of 6 kA 
for some 7 υs, it produced a longitudinal 
magnetic field of 1.5 T.

At the right:
The somewhat bigger CMS solenoid
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ü This coupling means that one can transfer 
oscillation energy from one transverse plane to the 
other.

ü Exactly as for linear resonances there are resonant 
conditions.

ü If we meet one of these conditions the transverse 
oscillation amplitude will again grow in an 
uncontrolled way.

Coupling and Resonance

nQh± mQv = integer
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A mechanical equivalent

We can transfer oscillation energy from one 
pendulum to the other depending on the strength 
‘k’ of the spring 
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General tune diagram

Qh

Qv
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Qh - Qv= 0

4Qh =11

2Qv =5
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Realistic tune diagram
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During acceleration we 
change the horizontal 
and vertical tune 
to a place where the 
beam is the least 
influenced by 
resonances.

injection

ejection
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Measured tune diagram

Move a large 
emittance beam 
around in this 
tune diagram and 
measure the beam 
losses.

Not all resonance 
lines are harmful.
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Conclusion
ü There are many things in our machine, which will 

excite resonances:
ü The magnets themselves
ü Unwanted higher order field components in our magnets
ü Tilted magnets
ü Experimental solenoids (LHC experiments)

ü The trick is to reduce and compensate these 
effects as much as possible and then find some 
point in the tune diagram where the beam is stable.
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Questions….,Remarks…?

Phase space Resonance

Tune diagram

Coupling
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