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A quick recap…….
ü We solved Hill’s equation, which led us to the 

definition of transverse emittance and allowed us 
to describe particle motion in transverse phase 
space in terms of β, α, etc…

ü We constructed the Transport Matrices
corresponding to drift spaces and quadrupoles.

ü Now we must combine these matrices with the 
solution of Hill’s equation to evaluate β, α, etc…
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Matrices & Hill’s equation 
ü We can multiply the matrices of our drift spaces and 

quadrupoles together to form a transport matrix that 
describes a larger section of our accelerator.

ü These matrices will move our particle from one point 
(x(s1),x’(s1)) on our phase space plot to another (x(s2),x’(s2)), 
as shown in the matrix equation below.

ü The elements of this matrix are fixed by the elements 
through which the particles pass from point s1 to point s2.

ü However, we can also express (x, x’) as solutions of Hill’s 
equation.
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Matrices & Hill’s equation (2) 

ü Assume that our transport matrix describes a complete turn
around the machine.

ü Therefore : 𝛽(s2) = 𝛽(s1)
ü Let μ be the change in betatron phase over one complete turn.
ü Then we get for x(s2):
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Matrices & Hill’s equation (3) 

ü Equating the ‘sin’ terms gives: fbefµbe sin/sinsin. b-=-

ü Which leads to: µb sin=b

fbefbeafbefµbe sin/cos/cos.)cos(. bba --=+
ü So, for the position x at s2 we have…

µfµf sinsincoscos -

ü Equating the ‘cos’ terms 
gives:

fµbeafbefµbe cossin.cos.coscos. -= a

ü Which leads to: µa sincos += ua

ü We can repeat this for c and d.
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Matrices & Twiss parameters 

ü These are called TWISS parameters

ü Remember previously we defined:

ü Our transport matrix becomes now:

ü Remember also that μ is the total betatron phase advance 
over one complete turn is.
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Lattice parameters 

ü This matrix describes one complete turn around our machine 
and will vary depending on the starting point (s).

ü If we start at any point and multiply all of the matrices 
representing each element all around the machine we can 
calculate α, β, γ and µ for that specific point, which then will 
give us 𝛽(s) and Q

ü If we repeat this many times for many different initial 
positions (s) we can calculate our Lattice Parameters for all 
points around the machine.
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Lattice calculations and codes
ü Obviously μ (or Q) is not dependent on the initial position ‘s’, 

but we can calculate the change in betatron phase, dμ, from one 
element to the next.

ü Computer codes like “MAD” or “Transport” vary lengths, 
positions and strengths of the individual elements to obtain the 
desired beam dimensions or envelope ‘β(s)’ and the desired 
‘Q’.

ü Often a machine is made of many individual and identical 
sections (FODO cells). In that case we only calculate a single 
cell and not the whole machine, as the the functions β (s) and dµ
will repeat themselves for each identical section.

ü The insertion sections have to be calculated separately.
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The β(s) and Q relation.

p
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ü But we also found: ( )
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ü Increasing the focusing strength decreases the size of the 
beam envelope (β) and increases Q and vice versa.
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Tune corrections
ü What happens if we change the focusing strength slightly?
ü The Twiss matrix for our ‘FODO’ cell is given by:
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ü Add a small QF quadrupole, with strength dK and length ds.
ü This will modify the ‘FODO’ lattice, and add a horizontal 

focusing term:
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Tune corrections (2)

ü If d𝜇 is small then we can ignore changes in β

ü So the new Twiss matrix is just:
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ü This extra quadrupole will modify the phase advance 𝜇 for the 
FODO cell.

𝜇1 = 𝜇 + d𝜇New phase advance

Change in phase advance
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Tune corrections (3)
ü These two matrices represent the same FODO cell therefore:

ü Which equals:
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ü Combining and compare the first and the fourth terms of 
these two matrices gives:

2 21cos cos sinµ µ b µ= -dk ds
Only valid for change in  b <<
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2 21cos cos sinµ µ b µ= -dk ds

µbµµ sinsin2 dsdkd =

Remember 𝜇1 = 𝜇 + d𝜇
and dµ is small

bµ sdkdd
2
1
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If we follow the same reasoning for both transverse 
planes for both QF and QD quadrupoles
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Tune corrections (4)

,but:
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Let dkF = dk for QF and   dkD = dk for QD

bhF, bvF = b at QF and bhD, bvD = b at QD
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1Then: 

This matrix relates the change in the tune to the change in 
strength of the quadrupoles.
We can invert this matrix to calculate change in quadrupole 
field needed for a given change in tune

Tune corrections (5)
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Dispersion (1)

ü Different energy or momentum particles have different radii of 
curvature (ρ) in the main dipoles.

ü These particles no longer pass through the quadrupoles at the 
same radial position.

ü Quadrupoles act as dipoles for different momentum particles.
ü Closed orbits for different momentum particles are different.
ü This horizontal displacement is expressed as the dispersion 

function D(s)
ü D(s) is a function of ‘s’ exactly as β(s) is a function of ‘s’

ü Until now we have assumed that our beam has no energy or 
momentum spread:

0=D
E
E 0=D

p
pand
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Dispersion (2)
ü The displacement due to the change in momentum at any 

position (s) is given by:

ü D(s) the dispersion function, is calculated from the lattice, 
and has the unit of meters.

ü The beam will have a finite horizontal size due to it’s 
momentum spread.

ü In the majority of the cases we have no vertical dipoles, and 
so D(s)=0 in the vertical plane.

p
psDsx D=D ).()(

Local radial 
displacement due to 
momentum spread

Dispersion function
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Momentum compaction factor
ü The change in orbit with the changing momentum means that 

the average length of the orbit will also depend on the beam 
momentum. 

ü This is expressed as the momentum compaction factor, α p, 
where:

ü α p tells us about the change in the length of radius of the 
closed orbit for a change in momentum.
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Chromaticity
ü The focusing strength of our quadrupoles depends on the beam 

momentum, ‘p’

ü But Q depends on the ‘k’ of the quadrupoles

rBdx
dByk 1

´= p.3356.3

ü Therefore a spread in momentum causes a spread in focusing 
strength
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ü The constant here is called : Chromaticity
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Chromaticity visualized
ü The chromaticity relates the tune spread of the transverse 

motion with the momentum spread in the beam.

p0

A particle with a higher 
momentum as the central 

momentum will be deviated 
less in the quadrupole and will 

have a lower betatron tune

A particle with a lower 
momentum as the central 

momentum will be deviated 
more in the quadrupole and will 

have a higher betatron tune

p
p

Q
Q D
=

D xFocusing 
quadrupole in 

horizontal plane

p > p0

p < p0

QF
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Chromaticity calculated
ü Remember

ü To correct this tune spread we need to increase the 
quadrupole focusing strength for higher momentum particles, 
and decrease it for lower momentum particles.

ü This term is the Chromaticity ξ

ü This we will obtain using a Sextupole magnet
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Sextupole Magnets
ü Conventional Sextupole 

from LEP, but looks 
similar for other 
‘warm’ machines.

ü ~ 1 meter long and a 
few hundreds of kg.

ü Correction Sextupole of 
the LHC

ü 11cm, 10 kg, 500A at 2K 
for a field of 1630 T/m2
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Chromaticity correction

ü Vertical magnetic field versus horizontal displacement in a 
quadrupole and a sextupole.

x

ByFinal “corrected” By By = Kq.x
(Quadrupole)

By = Ks.x2

(Sextupole)
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Chromaticity correction (2)
ü The effect of the sextupole field is to increase the magnetic 

field of the quadrupoles for the positive ‘x’ particles and 
decrease the field for the negative ‘x’ particles.

ü However, the dispersion function, D(s), describes how the 
radial position of the particles change with momentum.

ü Therefore the sextupoles will alter the focusing field seen by 
the particles as a function of their momentum.

ü This we can use to compensate the natural chromaticity of the 
machine.
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Sextupole & Chromaticity
ü In a sextupole for y = 0 we have a field By = C.x2

ü Now calculate ‘k’ the focusing gradient as we did for a 
quadrupole:

Cx
dx
dBy 2=

ü We conclude that ‘k’ is no longer constant, as it depends on ‘x’
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ü For k we now write
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ü So for a Δx we get and we know that 

ü Therefore
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Sextupole & Chromaticity
ü We know that the tune changes with :

ü Where: and

ü Remember with

ü If we can make this term exactly balance the natural 
chromaticity then we will have solved our problem.

ü The effect of a sextupole with length l on the particle tune Q 
as a function of Δp/p is given by:
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Sextupole & Chromaticity (2)
ü There are two chromaticities:

ü horizontal à ξh
ü vertical à ξv

ü However, the effect of a sextupole depends on β(s), which 
varies around the machine

ü Two types of sextupoles are used to correct the chromaticity.
ü One (SF) is placed near QF quadrupoles where βh is large 

and β v is small, this will have a large effect on ξh
ü Another (SD) placed near QD quadrupoles, where βv is 

large and βh is small, will correct ξv

ü Also sextupoles should be placed where D(s) is large, in order 
to increase their effect, since Δk is proportional to D(s)
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Questions….,Remarks…?

Hill’s equation Lattices and tune 
corrections

Sextupoles

Dispersion and 
chromaticity
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