Machine Learning tools in the search for leptoquarks in final states with taus, b-jets and MET at the LHC

In collaboration with E. Arganda, D. Díaz, R. M. Sandá Seoane, A. Szynkman 2306.xxxxx

Andres Daniel Perez Instituto de Física Teórica UAM-CSIC

10/05/2023

Outline

Signal and background

Scalar-leptoquarks
Selection cuts and comparison with an ATLAS collaboration analysis

From Machine Learning to significances

How to link ML classifiers with standard statistical tests

Results: expected significance

95% C.L. expected exclusion contours for m(LQ) vs BR(LQ $\rightarrow q\ell$)

Signal and Backgrounds

Signal: pair production of scalar-leptoquarks

Leptoquarks are motivated by GUT (also used to explain B-anomalies)

Only decays into third-generation leptons and quarks (minimal Buchmüller-Rückl-Wyler model)

2 parameters: $m(LQ^{u/d})$, leptoquark mass and $BR(LQ^{u/d} \rightarrow q\ell)$, the branching fraction into a quark and a charged lepton.

$$BR(LQ^{u/d} \rightarrow qV) = 1 - BR(LQ^{u/d} \rightarrow q\ell)$$

Signal: pair production of scalar-leptoquarks

For a $BR(LQ^{u/d} \rightarrow q\ell) \sim 0.5$ most of the decays of the pair of third-generation leptoquarks yield a final state with one tau lepton, two b-jets and large MET from the tau neutrino.

Events with final states with:

1 hadronically decaying tau leptons (p_T >20GeV, $|\eta|$ <2.5), at least 2 b-tagged jets (p_T >20GeV, $|\eta|$ <2.5), large missing transverse momentum (MET>280 GeV) no light leptons (e/ μ)

Background: SM

ATLAS analysis, Phys. Rev. D 104, (2021) 112005, arXiv:2108.07665

	Single-tau SR (binned in $p_{\rm T}(\tau)$)			
[50, 100] GeV	[100, 200] GeV	> 200 GeV		
8	6	2		
10.1 ±1.8	5.1 ±1.1	2.05 ± 0.64		
_	_	_		
4.8 ± 1.2	2.69 ± 0.88	0.64 ± 0.29		
2.83 ± 0.87	0.66 ± 0.17	0.185 ± 0.072		
$0.85 \begin{array}{l} +0.86 \\ -0.85 \end{array}$	0.54 ± 0.54	0.57 ± 0.56		
0.34 ± 0.12	0.64 ± 0.24	0.37 ± 0.12		
0.275 ± 0.081	0.043 ± 0.022	0.123 ± 0.048		
0.163 ± 0.037	0.111 ± 0.030	$0.030 \begin{array}{l} +0.032 \\ -0.030 \end{array}$		
0.65 ± 0.16	0.31 ± 0.12	0.092 ± 0.035		
0.10 ± 0.10	$0.060^{+0.061}_{-0.060}$	$0.028 \begin{array}{l} +0.029 \\ -0.028 \end{array}$		
0.096 ± 0.074	0.091 ± 0.049	0.0120 ± 0.0084		
	$\begin{array}{c} 8\\ 10.1 \pm 1.8\\ \hline \\ -\\ 4.8 \pm 1.2\\ 2.83 \pm 0.87\\ 0.85 \stackrel{+0.86}{-0.85}\\ 0.34 \pm 0.12\\ 0.275 \pm 0.081\\ 0.163 \pm 0.037\\ 0.65 \pm 0.16\\ 0.10 \pm 0.10\\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		

Different selection cuts

ATLAS analysis, Phys. Rev. D 104, (2021) 112005, arXiv:2108.07665

Events with final states with: 1 hadronically decaying tau leptons (p_T >20GeV, $|\eta|$ <2.5),

at least 2 b-tagged jets (p_T >20GeV, $|\eta|$ <2.5),

large missing transverse momentum (E_{τ}^{miss} >280 GeV)

no light leptons (e/µ)

ATLAS signal enriched region:
$$\sum m_{\rm T}(b_{1,2}) = m_{\rm T}(b_1) + m_{\rm T}(b_2) > 700 \, {\rm GeV}$$

$$m_{\rm T}(\tau) > 150 \, {\rm GeV}$$

$$s_{\rm T} = p_{\rm T}(\tau) + p_{\rm T}({\rm jet_1}) + p_{\rm T}({\rm jet_2}) > 600 \, {\rm GeV}$$

where
$$m_{\rm T}^2(\mathbf{p}_{\rm T}, \mathbf{E}_{\rm T}^{\rm miss}) = 2 p_{\rm T} E_{\rm T}^{\rm miss} \left(1 - \cos \Delta \phi(\mathbf{p}_{\rm T}, \mathbf{E}_{\rm T}^{\rm miss})\right)$$
 is the stransverse mass

Different selection cuts

ATLAS analysis, Phys. Rev. D 104, (2021) 112005, arXiv:2108.07665

Events with final states with: 1 hadronically decaying tau leptons (p_T >20GeV, $|\eta|$ <2.5),

at least 2 b-tagged jets (p_T>20GeV, $|\eta|$ <2.5),

large missing transverse momentum (E_{τ}^{miss} >280 GeV)

no light leptons (e/μ)

ATLAS signal enriched region:
$$\sum m_{\rm T}(b_{1,2}) = m_{\rm T}(b_1) + m_{\rm T}(b_2) > 700 \, {\rm GeV}$$

$$m_{\rm T}(\tau) > 150 \, {\rm GeV}$$

$$s_{\rm T} = p_{\rm T}(\tau) + p_{\rm T}({\rm jet}_1) + p_{\rm T}({\rm jet}_2) > 600 \, {\rm GeV}$$

where
$$m_{\rm T}^2(\mathbf{p}_{\rm T}, \mathbf{E}_{\rm T}^{\rm miss}) = 2 p_{\rm T} E_{\rm T}^{\rm miss} \left(1 - \cos \Delta \phi(\mathbf{p}_{\rm T}, \mathbf{E}_{\rm T}^{\rm miss})\right)$$
 is the stransverse mass

From ML to significances

Expected significance

In that signal enriched region → (we discard events outside of it)

$$\rightarrow$$
 significance \sim $\frac{S}{\sqrt{B}}$

Expected significance

We used the **full 1D** ML classifier output o(x) with the standard statistical tests (without defining a working point) to compute the significance

3.5 Sampled pb 3.0 Learned pb Sampled ps 2.5 Learned ps 2.0 1.5 1.0 0.5 0.0 0.2 0.4 0.6 0.8 0.0 1.0 s(x)

$o(\bar{x})$ Binned Likelihood method

$$\mathrm{med}\left[Z_0^{\mathrm{binned}}|1
ight] = \left[2\;\sum_{d=1}^D\left((S_d+B_d)\ln\left(1+rac{S_d}{B_d}
ight)-S_d
ight)
ight]^{1/2}$$

 $o(\bar{x})$ Unbinned method

Use KDE to estimate the B and S PDFs.

• Calculate Z building pseudo-experiments

Results

Results

Example $m(LQ^u) = 1200$ GeV, and BR($LQ^u \rightarrow q\ell$)=0.5

Results

For both types of scalar leptoquarks, the expected exclusion contours extend to masses around 1.25 TeV (ATLAS), 1.35 TeV (Binned), 1.45 TeV (Unbinned) at the 95% confidence level for intermediate values of the branching fraction $BR(LQ^{u/d} \rightarrow q\ell)$

Conclusions

- Search for new phenomena in final states with hadronically decaying tau leptons,
 b-jets and large missing transverse momentum
 - → third-generation scalar leptoquarks (motivated by GUT).
- As a proof of concept we used ML algorithms with simple selection cuts and compared them to an ATLAS analysis.
- We use the full classifier output (no working points) to estimate the significances.
- For both types of scalar leptoquarks, expected exclusion contours up to masses
 - 1.25 TeV (ATLAS)
 - 1.35 TeV (Binned)
 - 1.45 TeV (Unbinned)

at the 95% confidence level for intermediate values of the branching fraction $BR(LQ^{u/d} \rightarrow q\ell)$

Thank you!

Back up

ATLAS

ATLAS

Down-type Leptoquarks

Up-type Leptoquarks

Leptoquark model

Buchmüller-Rückl-Wyler model, Phys. Lett. B 191 (1987) 442

We start from an effective lagrangian with the most general dimensionless, $SU(3)\times SU(2)\times U(1)$ invariant couplings of scalar and vector leptoquarks satisfying baryon and lepton number conservation:

$$\mathcal{L} = \mathcal{L}_{F=2} + \mathcal{L}_{F=0},\tag{1a}$$

$$\mathcal{L}_{F=2} = (g_{1L}\bar{q}_{L}^{c}i\tau_{2}\ell_{L} + g_{1R}\bar{u}_{R}^{c}e_{R})S_{1}
+ \tilde{g}_{1R}\bar{d}_{R}^{c}e_{R}\tilde{S}_{1} + g_{3L}\bar{q}_{L}^{c}i\tau_{2}\tau\ell_{L}S_{3}
+ (g_{2L}\bar{d}_{R}^{c}\gamma^{\mu}\ell_{L} + g_{2R}\bar{q}_{L}^{c}\gamma^{\mu}e_{R})V_{2\mu}
+ \tilde{g}_{2L}\bar{u}_{R}^{c}\gamma^{\mu}\ell_{L}\tilde{V}_{2\mu} + c.c.,$$
(1b)

$$\mathcal{L}_{F=0} = (h_{2L}\bar{\mathbf{u}}_{R}\ell_{L} + h_{2R}\bar{\mathbf{q}}_{L}i\tau_{2}\mathbf{e}_{R})R_{2} + \tilde{h}_{2L}\bar{\mathbf{d}}_{R}\ell_{L}\tilde{\mathbf{R}}_{2}$$

$$+ (h_{1L}\bar{\mathbf{q}}_{L}\gamma^{\mu}\ell_{L} + h_{1R}\bar{\mathbf{d}}_{R}\gamma^{\mu}\mathbf{e}_{R})U_{1\mu}$$

$$+ \tilde{h}_{1R}\bar{\mathbf{u}}_{R}\gamma^{\mu}\mathbf{e}_{R}\tilde{\mathbf{U}}_{1\mu} + h_{3L}\bar{\mathbf{q}}_{L}\boldsymbol{\tau}\gamma^{\mu}\ell_{L}U_{3\mu} + \text{c.c.}$$
(1c)

The Yukawa-type interaction of the leptoquarks with the quark-lepton pair are determined by two parameters:

- a common coupling strength λ (=g, h) and,
- an additional parameter β , with the coupling to a quark and a charged lepton given by $(\sqrt{\beta})$ λ , and the coupling to a quark and a neutrino by $[\sqrt{(1-\beta)}] \lambda$.

The branching fraction $BR(LQ^{u/d} \rightarrow q\ell) = \beta$, except for kinematic effects arising from the mass differences of the decay products.

 λ set to 0.3 close to the electromagnetic coupling $e=\sqrt{(4\pi\alpha)}$, resulting in a LQ^{u/d} width equal to ~0.2% of its mass

Leptoquark model

Buchmüller-Rückl-Wyler model, Phys. Lett. B 191 (1987) 442

Table 1 Quantum numbers of scalar and vector leptoquarks with $SU(3)\times SU(2)\times U(1)$ invariant couplings to quark-lepton pairs $(Y=Q_{cm}-T_3)$.

	Spin	F=3B+L	$SU(3)_c$	$SU(2)_{w}$	$U(1)_{\gamma}$
S,	0	-2	3*	1	1/3
Sı Sı	0	-2	3*	1	4
S_3	0	-2	3*	3	1/3
V_2	1	-2	3*	2	8
$\mathbf{\tilde{V}}_2$	1	-2	3*	2	- j
R_2	0	0	3	2	7
$\mathbf{\tilde{R}}_2$	0	0	3	2	+
U,	1	0	3	1	2/3
$\tilde{\mathbf{U}}_{i}$	1	0	3	1	5
U_3	1	0	3	3	2/3

Leptoquark model

Buchmüller-Rückl-Wyler model, Phys. Lett. B 191 (1987) 442

Table2
Couplings of scalar and vector leptoquarks to quark-lepton pairs. The subscripts L,R of the couplings refer to the lepton chirality.

Channel LQ	F=-2, so	F=-2, scalars		F=-2, vec	etors	
	Sı	Ĩ,	S ₃	$\overline{\mathbf{v}_2}$	$\tilde{\mathbb{V}}_2$	
e _{L,R} u	<i>g</i> 1L.R	-	-g _{3L}	g _{2R}	8 21.	
$v_L d$	$-g_{1L}$	-	$-g_{3\underline{L}}$	82L	-	
$\mathbf{e}_{L,\mathbf{R}}^{-}\mathbf{d}$	-	81R	$-\sqrt{2}g_{3L}$	g _{2L,R}	-	
$v_L \mathbf{u}$	_	-	$\sqrt{2}g_{3L}$	1	$ ilde{g}_{2L}$	
Channel	F=0, vec	F=0, vectors		F=0, scalars		LQ ^u
	Uı	Ũ,	U ₃	R_2	$\mathbf{\tilde{R}}_2$	
$e_{L,R}^- \bar{d}$	$h_{1L,R}$	-	$-h_{3L}$	- h _{2R}	$ar{h}_{2L}$	
$\nu_{\mathbf{L}}\mathbf{\tilde{u}}$	h_{1L}	-	h_{3L}	h_{2L}	-	
$e_{L,R}^- \bar{\mathtt{u}}$	=	$ ilde{h}_{ ext{IR}}$	$\frac{h_{3L}}{\sqrt{2}h_{3L}}$	$h_{2L,R}$	-	
$v_L \bar{d}$	_	_	$\sqrt{2}h_{3L}$		$ ilde{h_{2L}}$	

B-anomalies

Status of the charged-current LFU ratios R(D) and R(D*).

Measurements of the e/μ LFU ratios reported by LHCb in December 2022.

Fully compatible with the SM

B-anomalies

Measurements of the e/μ LFU ratios reported by LHCb in December 2022.

$$R_{K^{(*)}}^{[q_1^2, q_2^2]} = \frac{\operatorname{Br}'(B \to K^{(*)}\mu\mu)}{\operatorname{Br}'(B \to K^{(*)}ee)}$$

B-anomalies

Status of the charged-current LFU ratios R(D) and $R(D^*)$.

$$R_{D^{(*)}} = \frac{\operatorname{Br}\left(B \to D^{(*)}\tau\bar{\nu}\right)}{\operatorname{Br}\left(B \to D^{(*)}\ell\bar{\nu}\right)} \bigg|_{\ell \in \{e,\mu\}}$$

Supervised Learning

Input

Labeled data D={ $(\bar{x}_1, t_1), ..., (\bar{x}_n, t_n)$ } { \bar{x}_i }: features, e.g. p_T , $\Delta \phi_{12}$, E_t^{miss} { t_i }: target, e.g. for classification:

1 for signal0 for background

Train dataset \bar{x}

Output

The algorithm finds a mapping: ideally $o(\bar{x}_i)=t_i$ for classification: $o(\bar{x}_i) \in [0,1]$

Supervised Learning

New data

Data sample that we do not know if it is Signal or Background

Prediction

To assign a label a threshold or working point (WP) is needed

Likelihood to define the statistical model for N independent measurements, with a set of observables x_i

with:

- S the expected total signal yield
- B the expected total background yield

$$p_{a}\left(x|\mu,s,b
ight)=rac{B}{\mu S+B}\,p_{b}(x)+rac{\mu S}{\mu S+B}\,p_{s}(x) \qquad \qquad p_{s}(x)=p(x|s) \ p_{b}(x)=p(x|b)$$

• μ the signal strength defines the hypothesis we are testing for:

background-only hypothesis $\rightarrow \mu = 0$ background-plus-signal hypothesis $\rightarrow \mu = 1$

The relevant test statistic for **discovery** limits (very similar for exclusion):

using the Likelihood $q_0 = egin{cases} -2 \operatorname{Ln} rac{\mathcal{L}(0,s,b)}{\mathcal{L}(\hat{\mu},s,b)} & ext{if } \hat{\mu} \geq 0 \,, \ 0 & ext{if } \hat{\mu} < 0 \,, \end{cases}$ $q_0 = egin{cases} -2\hat{\mu}S + 2\sum_{i=1}^N \operatorname{Ln} \left(1 + rac{\hat{\mu}S}{B} rac{p_s(x_i)}{p_b(x_i)}
ight) & ext{if } \hat{\mu} \geq 0 \,, \ 0 & ext{if } \hat{\mu} < 0 \,. \end{cases}$

discovery corresponds to studying background-only hypothesis $\mu = 0$

where $\hat{\mu}$ is the parameter that maximizes the likelihood

$$\sum_{i=1}^{N} rac{p_s(x_i)}{\hat{\mu} S \ p_s(x_i) + B \ p_b(x_i)} = 1$$
 .

The relevant test statistic for **discovery** limits (very similar for exclusion):

using the Likelihood $q_0 = egin{cases} -2 \operatorname{Ln} rac{\mathcal{L}(0,s,b)}{\mathcal{L}(\hat{\mu},s,b)} & ext{if } \hat{\mu} \geq 0 \,, \ 0 & ext{if } \hat{\mu} < 0 \,, \end{cases}$

discovery corresponds to studying background-only hypothesis $\mu = 0$

$$q_0 = egin{cases} -2\hat{\mu}S + 2\sum_{i=1}^N \operatorname{Ln} \ \left(1 + rac{\hat{\mu}S}{B}rac{p_s(x_i)}{p_b(x_i)}
ight) & ext{if} \ 0 & ext{if} \end{cases}$$

 $\text{if } \hat{\mu} \geq 0\,,$

if $\hat{\mu} < 0$.

where $\hat{\mu}$ is the parameter that maximizes the likelihood

$$\sum_{i=1}^{N} rac{p_s(x_i)}{\hat{\mu} S \, p_s(x_i) + B \, p_b(x_i)} = 1$$
 .

We need

$$p_s(x) = p(x|s)$$

Replace the densities for the one-dimensional manifolds obtained with a machine-learning classifier.

The classification score that maximizes the binary cross-entropy approaches:

$$o(x)=rac{p_s(x)}{p_s(x)+p_b(x)}$$

Dimensional reduction by dealing with o(x) instead of x

$$p_b(x) o ilde{p}_b(o(x)) \,, \qquad ext{and} \qquad p_s(x) o ilde{p}_s(o(x))$$

$$p_s(x) o ilde{p}_s(o(x))$$

where $\tilde{p}_{s,b}(o(x))$ are the distributions of o(x) for signal and background, obtained by evaluating the classifier on a set of pure signal or background events, respectively.

Then, the relevant test statistic for **discovery** limits

$$q_0 = egin{cases} -2\hat{\mu}S + 2\sum_{i=1}^N \operatorname{Ln} \ \left(1 + rac{\hat{\mu}S}{B}rac{ ilde{p}_s(o(x_i))}{ ilde{p}_b(o(x_i))}
ight) & ext{if } \hat{\mu} \geq 0 \,, \ 0 & ext{if } \hat{\mu} < 0 \,, \end{cases}$$

with $\hat{m{\mu}}$ the parameter that maximizes the likelihood

$$\sum_{i=1}^{N} rac{ ilde{p}_s(o(x_i))}{\hat{\mu}S\, ilde{p}_s(o(x_i)) + B\, ilde{p}_b(o(x_i))} = 1$$

We can estimate numerically the q_0 distribution.

The median expected significance assuming signal-plus-background hypothesis (µ'=1) is

$$Z_0 o \operatorname{med}\left[Z_0|1
ight] = \sqrt{\operatorname{med}\left[q_0|1
ight]}$$

Density estimation

We want to retrieve the density function from which the samples were generated

$$p_b(x) \to \tilde{p}_b(o(x))$$
,

 $p_b(x) o ilde{p}_b(o(x)) \,, \qquad ext{and} \qquad p_s(x) o ilde{p}_s(o(x))$

The original space, x_n can be high-dimensional but the classifier output o(x) is always one-dimensional

- To avoid binning, we use a non-parametric method:

Kernel Density Estimation (KDE)

Kernel Density Estimation (KDE)

$$p_{s,b}(o(x)) = rac{1}{N} \sum_i^N \kappa_{\epsilon} \left[o(x) - o(x_i)
ight]$$

where κ_s is a kernel function that depends on the "smoothing" scale, or bandwidth parameter ϵ .

We use the Epanechnikov kernel

$$\kappa_{\epsilon}(u) = egin{cases} rac{1}{\epsilon} rac{3}{4} ig(1 - (u/\epsilon)^2ig), & ext{if } |u| \leq \epsilon \ 0, & ext{otherwise} \end{cases}$$

The bandwidth parameter ε is key

- if ε is too low the model may overfit
- if ε is too high the model may underfit

Train supervised per-even classifier: XGBoost with 1M events per class Multivariate Gaussian distributions, \mathcal{N}_2 2.0 1.5 PDF 1.0 Binned $\tilde{p}_b(o(x))$ KDE $\tilde{p}_b(o(x))$ 0.5 Binned $\tilde{p}_s(o(x))$ KDE $\tilde{p}_s(o(x))$ 0.0 0.2 0.6 8.0 0.4 1.0 0.0 o(x)

Evaluate o(x) with the test data-set Find the distributions with KDE

Build toy ensembles of fixed B and S (each one represent a possible experimental result) and evaluate the test statistic q_0

Calculate the significance

$$Z=\sqrt{\mathrm{med}[q_0]}$$

First find $\hat{\mu}$ (for each ensemble)

$$\sum_{i=1}^{N} rac{ ilde{p}_s(o(x_i))}{\hat{\mu} S \, ilde{p}_s(o(x_i)) + B \, ilde{oldsymbol{p}}_b(o(x_i))} = 1$$

summation over the events of each ensemble (build a lot)

Estimate numerically the test statistic (for each ensemble)

$$q_0 = egin{cases} -2\hat{\mu}S + 2\sum_{i=1}^N \operatorname{Ln} \ \left(1 + rac{\hat{\mu}S}{B}rac{ ilde{p}_s(o(x_i))}{ ilde{p}_b(o(x_i))}
ight) \ 0 \end{cases}$$

Build toy ensembles of fixed B and S (each one represent a possible experimental result) and evaluate the test statistic q_0

Calculate the significance

$$Z = \sqrt{\operatorname{med}[q_0]}$$

Traditional Binned-Likelihood (BL) method

The Likelihood for D bins, where in each bin d, B_d : the expected number of background events, S_d : the expected number of signal events, and N_d : the measured number of events,

$$\mathcal{L}(\mu, s, b) = \prod_{d=1}^{D} ext{Poiss}ig(N_d | \mu S_d + B_dig)$$

The median discovery significance

$$ext{med} \ [Z_0^{ ext{binned}}|1] = \left[2 \ \sum_{d=1}^D \left((S_d + B_d) \operatorname{Ln} \left(1 + rac{S_d}{B_d}
ight) - S_d
ight)
ight]^{1/2} \ rac{S \ll B}{\sqrt{B} \gg 1}
ight. rac{S}{\sqrt{B}}$$

arXiv: 2207.00338

DNN output

JHEP 10 (2018) 117

The relevant test statistic for **exclusion** limits (very similar for exclusion):

$$\tilde{q}_{\mu} = \begin{cases} 0 & \text{if } \hat{\mu} > \mu \text{ ,} \\ -2 \operatorname{Ln} \frac{\mathcal{L}(\mu, s, b)}{\mathcal{L}(\hat{\mu}, s, b)} & \text{if } 0 \leq \hat{\mu} \leq \mu \text{ ,} \\ -2 \operatorname{Ln} \frac{\mathcal{L}(\mu, s, b)}{\mathcal{L}(0, s, b)} & \text{if } \hat{\mu} < 0 \text{ ,} \end{cases}$$

$$\tilde{q}_{\mu} = \begin{cases} 0 & \text{if } \hat{\mu} > \mu \text{ ,} \\ 2(\mu - \hat{\mu})S - 2\sum_{i=1}^{N} \operatorname{Ln} \left(\frac{Bp_{b}(x_{i}) + \mu Sp_{s}(x_{i})}{Bp_{b}(x_{i}) + \hat{\mu}Sp_{s}(x_{i})} \right) & \text{if } 0 \leq \hat{\mu} \leq \mu \\ 2\mu S - 2\sum_{i=1}^{N} \operatorname{Ln} \left(1 + \frac{\mu Sp_{s}(x_{i})}{Bp_{b}(x_{i})} \right) & \text{if } \hat{\mu} < 0; \end{cases}$$

where $\hat{\mu}$ is the parameter that maximizes the likelihood

$$\sum_{i=1}^{N} rac{p_s(x_i)}{\hat{\mu} S \ p_s(x_i) + B \ p_b(x_i)} = 1$$
 .

exclusion corresponds to studying signal+background hypothesis $\mu = 1$

$$egin{aligned} & ext{if } \hat{\mu} > \mu \ & ext{if } 0 \leq \hat{\mu} \leq \mu \end{aligned}$$
 $& ext{-} \ & ext{if } \hat{\mu} < 0; \end{aligned}$

The median expected significance assuming background-only hypothesis (μ '=0) is

$$Z_{\mu}
ightarrow \mathrm{med} \ [Z_{\mu}|0] = \sqrt{\mathrm{med} \ [ilde{q}_{\mu}|0]}$$