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Signal and 
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Signal: pair production of scalar-leptoquarks
Leptoquarks are motivated by GUT (also used to explain B-anomalies)

Only decays into third-generation leptons and quarks (minimal Buchmüller–Rückl–Wyler model)

2 parameters: 𝑚(LQu/d), leptoquark mass and 

BR(LQu/d →𝑞ℓ) , the branching fraction into a quark and a charged lepton.

    BR(LQu/d →𝑞ν) = 1 - BR(LQu/d →𝑞ℓ)
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Q(LQu)=+⅔e
LQu → 𝑡𝜈𝜏 / 𝑏𝜏

Q(LQd)=-⅔e
LQu → 𝑏𝜈𝜏 / 𝑡𝜏



Signal: pair production of scalar-leptoquarks

Events with final states with:  1 hadronically decaying tau leptons (p
T

>20GeV, |η|<2.5),

     at least 2 𝑏-tagged jets (p
T

>20GeV, |η|<2.5),

large missing transverse momentum (MET>280 GeV)

no light leptons (e/μ) 5

For a BR(LQu/d →𝑞ℓ) ~ 0.5 most of the decays of the pair of third-generation leptoquarks yield a 

final state with one tau lepton, two 𝑏-jets and large MET from the tau neutrino. 

Q(LQu)=+⅔e
LQu → 𝑡𝜈𝜏 / 𝑏𝜏

Q(LQd)=-⅔e
LQu → 𝑏𝜈𝜏 / 𝑡𝜏



Background: SM
ATLAS analysis, Phys. Rev. D 104, (2021) 112005, arXiv:2108.07665
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Different selection cuts
ATLAS analysis, Phys. Rev. D 104, (2021) 112005, arXiv:2108.07665
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where

Events with final states with:  1 hadronically decaying tau leptons (p
T

>20GeV, |η|<2.5),

     at least 2 𝑏-tagged jets (p
T

>20GeV, |η|<2.5),

large missing transverse momentum (𝐸
T

miss>280 GeV)

no light leptons (e/μ)

is the stransverse mass

> 700 GeV

> 150 GeV

> 600 GeV

ATLAS signal enriched region:



Different selection cuts
ATLAS analysis, Phys. Rev. D 104, (2021) 112005, arXiv:2108.07665
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where

Events with final states with:  1 hadronically decaying tau leptons (p
T

>20GeV, |η|<2.5),

     at least 2 𝑏-tagged jets (p
T

>20GeV, |η|<2.5),

large missing transverse momentum (𝐸
T

miss>280 GeV)

no light leptons (e/μ)
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ATLAS signal enriched region:



From ML to 
significances
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Expected significance

Defining a Working Point  ~  design observable, define a working region

       In that signal enriched region          →      significance ~  

     (we discard events outside of it)

x
1

x
2

x
3

Working 

Point

ML
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Expected significance
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We used the full 1D ML classifier output o(x) with the standard statistical tests (without 

defining a working point) to compute the significance

o(x̄) Binned Likelihood method o(x̄) Unbinned method

Use KDE to estimate the B and S PDFs.
↳Calculate Z building pseudo-experiments



Results

12



Results
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Example 𝑚(LQu) = 1200 GeV, and BR(LQu →𝑞ℓ)=0.5

Expected 
signal-to-background ratio 
for this parameter point.

Z > 1.64 → excluded at 
95%C.L.



Results
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For both types of scalar leptoquarks, the expected exclusion contours extend to masses 
around 1.25 TeV (ATLAS), 1.35 TeV (Binned), 1.45 TeV (Unbinned) at the 95% 
confidence level for intermediate values of the branching fraction BR(LQu/d →𝑞ℓ)

Up-type LeptoquarksDown-type Leptoquarks



Conclusions
● Search for new phenomena in final states with hadronically decaying tau leptons, 

𝑏-jets and large missing transverse momentum 
→ third-generation scalar leptoquarks (motivated by GUT).

● As a proof of concept we used ML algorithms with simple selection cuts and 
compared them to an ATLAS analysis.

● We use the full classifier output (no working points) to estimate the significances.

● For both types of scalar leptoquarks, expected exclusion contours up to masses
1.25 TeV (ATLAS)
1.35 TeV (Binned)
1.45 TeV (Unbinned) 

at the 95% confidence level for intermediate values of the branching fraction 
BR(LQu/d →𝑞ℓ)
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Thank you!
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Back up
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ATLAS
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ATLAS
Down-type Leptoquarks Up-type Leptoquarks
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Leptoquark model
Buchmüller–Rückl–Wyler model, Phys. Lett. B 191 (1987) 442

The Yukawa-type interaction of the leptoquarks 
with the quark-lepton pair are determined by two 
parameters: 

- a common coupling strength 𝜆 (=g, h) and,
- an additional parameter 𝛽, with the coupling 

to a quark and a charged lepton given by (√𝛽) 
𝜆, and the coupling to a quark and a neutrino 
by [√(1-𝛽)] 𝜆.

The branching fraction BR(LQu/d →𝑞ℓ) ≃ 𝛽, except 
for kinematic effects arising from the mass 
differences of the decay products.

𝜆 set to 0.3 close to the electromagnetic coupling 
𝑒=√(4𝜋𝛼), resulting in a LQu/d width equal to ~0.2% 
of its mass
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Leptoquark model
Buchmüller–Rückl–Wyler model, Phys. Lett. B 191 (1987) 442
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Leptoquark model
Buchmüller–Rückl–Wyler model, Phys. Lett. B 191 (1987) 442

LQu

LQd



B-anomalies

Status of the charged-current LFU ratios R(D) and R(D*). Measurements of the e/μ LFU ratios reported by 
LHCb in December 2022.

Fully compatible with the SM



B-anomalies

Measurements of the e/μ LFU ratios reported by LHCb in December 2022.



B-anomalies

Status of the charged-current LFU ratios R(D) and R(D*).



Supervised Learning
Input
Labeled data D={(x̄

1
,t

1
), … ,(x̄

n
,t

n
)} 

{x̄
i
}: features, e.g. p

T
, Δφ

12
,E

t
miss

{t
i
}: target, e.g. for classification:   

1 for signal 
0 for background

Output
The algorithm finds a mapping: 

ideally o(x̄
i
)=t

i

for classification: o(x̄
i
) ∈ [0,1]

26ML classifier

Train 
dataset x̄

ML output
o(x̄)

Always 1D



Supervised Learning
New data
Data sample that we do not know if 

it is Signal or Background  

          S or B
label ??

Prediction
To assign a label a threshold or 

working point (WP) is needed

    if o(x) < WP label → ‘0’ → B
    if o(x) > WP label → ‘1’ → S

27ML classifier

Test 
dataset x̄

ML output
o(x̄)

Always 1D



Machine Learned-Likelihood (MLL)
Likelihood to define the statistical model for N independent measurements, with a set of observables x

i

~ global info ~ local info

      ensemble factor        event-by-event

with: ◉ S the expected total signal yield

◉ B the expected total background yield

◉ 

◉ μ the signal strength defines the hypothesis we are testing for:

background-only hypothesis → μ = 0

background-plus-signal hypothesis → μ = 1



Machine Learned-Likelihood (MLL)
       The relevant test statistic for discovery limits (very similar for exclusion): discovery corresponds to 

studying background-only 

hypothesis μ = 0

using the 
Likelihood

       where       is the parameter that maximizes the likelihood



Machine Learned-Likelihood (MLL)
       The relevant test statistic for discovery limits (very similar for exclusion): discovery corresponds to 

studying background-only 

hypothesis μ = 0

using the 
Likelihood

       where       is the parameter that maximizes the likelihood
We need



Machine Learned-Likelihood (MLL)
       Replace the densities for the one-dimensional manifolds obtained with a machine-learning classifier.

       The classification score that maximizes the binary cross-entropy approaches:

       Dimensional reduction by dealing with o(x) instead of x

where                 are the distributions of o(x) for signal and 
background, obtained by evaluating the classifier on a set 
of pure signal or background events, respectively.



Machine Learned-Likelihood (MLL)
       Then, the relevant test statistic for discovery limits

       with       the parameter that maximizes the likelihood

       We can estimate numerically the q
0

 distribution. 

       The median expected significance assuming signal-plus-background hypothesis (μ’=1) is



Density estimation
       We want to retrieve the density function from which the samples were generated

The original space, xi, can be high-dimensional 
but the classifier output o(x) is always one-dimensional

    - To avoid binning, we use a non-parametric method:

Kernel Density Estimation (KDE)



Kernel Density Estimation (KDE)

       where κε 
is a kernel function that depends on the "smoothing" scale, or bandwidth parameter ε.

       We use the Epanechnikov kernel

       The bandwidth parameter ε is key

 - if ε is too low the model may overfit

 - if ε is too high the model may underfit



Train supervised per-even classifier: 

XGBoost with 1M events per class

Machine Learned-Likelihood (MLL)

Evaluate o(x) with the test data-set

Find the distributions with KDE

Build toy ensembles of fixed B and S (each one 

represent a possible experimental result)

and evaluate the test statistic q0

Calculate the significance



Machine Learned-Likelihood (MLL)
Build toy ensembles of fixed B and S (each one 

represent a possible experimental result)

and evaluate the test statistic q0

Calculate the significance

summation over the events of 
each ensemble (build a lot)

       First find       (for each ensemble)

Estimate numerically the test 

statistic (for each ensemble)



Traditional Binned-Likelihood (BL) method
       The Likelihood for D bins, where in each bin d, Bd: the expected number of background events, 

  Sd: the expected number of signal events, and Nd: the measured number of events,

       The median discovery significance

JHEP 10 (2018) 117 arXiv: 2207.00338



Machine Learned-Likelihood (MLL)
       The relevant test statistic for exclusion limits (very similar for exclusion): exclusion corresponds to 

studying signal+background 

hypothesis μ = 1

using the 
Likelihood

       where     is the parameter that maximizes the likelihood
The median expected significance 

assuming background-only 

hypothesis (μ’=0) is


