

Measurements of the production cross section of a W in association with a charm quark in pp collisions at LHC at $\sqrt{s} = 13 \text{ TeV}$

CMS Collaboration

7th Red LHC workshop 10th of May, 2023 Isabe

Isabel Josa Mutuberría
<u>Juan Pablo Fernández Ramos</u>
José María Hernández Calama
Sergio Sánchez Navas
(CIEMAT)

CMS-PAS-SMP-21-005

Introduction

Motivation

W+c probes the strange quark content of the proton
Cross section measurements provide information for extraction of the strange PDF

Measurements performed

Fiducial production cross section Differential cross sections vs p_T and η of lepton from W decay Cross section ratio $R_c^{\pm} \equiv \sigma(W^+ + \bar{c})/\sigma(W^- + c)$ (sensitive to s/ \bar{s} PDF asymmetry)

- Comparison with predictions from calculations at NLO in QCD (MCFM)
 - using several PDF sets at NLO (with and without s/s̄ PDF asymmetry)
- NEW: will include in paper the comparison with recent NNLO in QCD &
 NLO in EW predictions

Analysis strategy:

 $W^+ \rightarrow I^+ v$ (+c.c.) with $p_{_T}(I) > 35$ GeV & $|\eta(I)| < 2.4$ ($I = e, \mu$) [*]

Transverse mass $(M_{T}) > 55$ GeV

Identify heavy flavour hadrons in final states by taking advantage of long life of heavy hadrons:

- Displaced muon in jet (SL channel)
- Tracks forming a SV (SV channel)

Fiducial kinematic region: $p_T(I) > 35$ GeV, $|\eta(I)| < 2.4$ & $p_T^{c-jet} > 30$ GeV, $|\eta^{c-jet}| < 2.4$, $\Delta R(I,c-jet) > 0.4$ (c-jets formed with anti- k_t R=0.4 parton jets)

DATA: 2016-2018 13 TeV (138 fb⁻¹)

Opposite sign (OS) - same sign (SS) bkg. subtraction

Signal is OS (sign of electric charges of W and c are opposite)

For most backgrounds #events(OS) = #events(SS) with same kinematics

OS – SS to get rid of symmetric background

(80% purity in W+c, main remaining bck. tt semil and t)

Both SL and SV provide sign of electric charge of the charm quark

- SL Charge identification of the c quark through the charge of the μ -in-jet
- Charge definition: SS if the μ -in-jet has the same charge than the lepton from the W decay $OS \rightarrow Q_{W\rightarrow e,II} \neq Q_{II-in-jet}$ $SS \rightarrow Q_{W\rightarrow e,II} = Q_{\mu-in-jet}$
 - SV Charge identification of the charm quark through the $\Sigma_{i(tracks\ of\ SV)}\ Q_i$
 - Charge definition: SS if the SV has the same charge than the lepton from the W decay

the W decay ${\sf OS:Q}_{{\sf W}\rightarrow {\sf e}(\mu)} \neq {\sf Q}_{\sf SV} \qquad \qquad {\sf SS:Q}_{{\sf W}\rightarrow {\sf e}(\mu)} = {\sf Q}_{\sf SV}$

All channels (e,µ for W and SL and SV for charm) are combined

SV chanel

~80% signal ~10 % ttbar ~10% single top

SL channel

~80% signal ~10 % ttbar ~5% single top ~ 3% W+udsg

Systematics: Summary of main sources

Fiducial cross section:

	SL	SL	SV	SV
Uncertainty [%]	$W\to e\nu$	$W\to \mu\nu$	$W \to e \nu$	$W o \mu \nu$
Isolated lepton identification	2	1	2	1
Jet energy scale and resolution	2	2	2	2
Muon in jet identification	3	3	-	-
SV reconstruction	-	-	3	3
Charm fragmentation and decay	2	2	2	2
Limited size of MC samples	1	1	1	1
Integrated Luminosity	1.6	1.6	1.6	1.6
Total	5	5	5	5

Systematics down to 3.8% in the combination of the four channels

Fiducial cross section ratio:

Most of the systematic effects cancel out in the cross section ratio.

•Potential reconstruction efficiency differences for positive or negative leptons and SVs (1.2-1.4%, statistically limited by simulation)

Systematics down to 1% in the combination of the four channels

Results and comparison with predictions

Integrated fiducial cross section

MCFM predictions at NLO for W+c cross section for different PDF sets

Theoretical uncertainty dominated by PDF uncertainty.

These new measurements provide input to reduce it.

Differential cross sections

Integrated cross section ratio

Within experimental and theoretical uncertainties the measurement is compatible both with predictions that assume $s=\overline{s}$ and $s!=\overline{s}$

The experimental precision of these measurements is comparable to the PDF uncertainties (when $s!=\bar{s}$) and smaller than the total theory uncertainty.

Differential cross section ratio

NNLO QCD predictions

NNLO QCD and NLO EW calculations recently available (JHEP 2021 (2021) 100, JHEP 2023 (2023) 241). Predictions computed specifically for our phase space

• Flavor anti-kt jet clustering algorithm, NNLO NNPDF 3.1

Conclusions:

- The OS-SS cross section reduces the NNLO corrections, but does not remove them completely.
- The inclusion of the NNLO corrections brings the prediction closer (2%) to the experimental measurement.
- The EW NLO corrections further improves (2% closer) the agreement between the theoretical prediction and experimental data.
- The R_c^{\pm} observable is rather stable under perturbative QCD corrections, (< 1% from LO to NNLO).
- The NLO EW correction does not affect R_c^{\pm} .
- The theoretical prediction and the experimental measurement agree within uncertainties

Conclusions

- Measured W+c production fiducial cross section, inclusively and differentially at √s=13 TeV
- Comparison with NLO QCD predictions (MCFM) with different PDF's with and without s,s asymmetry
- With the current experimental and theoretical precision, the measurements are compatible with all predictions.
- Our measurements provide valuable input to reduce the uncertainty in s
 PDF for the next iteration of the different PDF groups.

There has been a lot of improvement in the last decades and there is more to come from both , theoretical and experimental results

Back up

Previous measurements at hadron colliders:

- 1) CMS @ 7 TeV (D*±,D± & SL) JHEP 02 (2014) 013,
- 2) CMS @ 8 TeV (SV & SL) Eur. Phys. J. C 82 (2022) 1094,
- 3) CMS @ 13 TeV (2016, D*±) Eur. Phys. J. C 79 (2019) 269,
- 4) ATLAS @ 7 TeV (D*±& D±) JHEP 05 (2014) 068
- 5) ATLAS @ 13 TeV (full Run II, D*± & D±) doi:10.48550/arXiv.2302.00336.

NNLO QCD predictions

JHEP 2021 (2021) 100, doi:10.1007/JHEP06(2021)100

JHEP 2023 (2023) 241, doi:10.1007/JHEP02(2023)241

- Calculations at LO, NLO and NNLO for the processes pp $\rightarrow \mu^+\nu_\mu j_c + X$ (+c.c.)
- At NLO, QCD corrections include all real and virtual contributions $O(\alpha_s^2 \alpha^2)$
- At NNLO, corrections include all double virtual, double real, virtual-real $O(\alpha_s^3 \alpha^2)$
- NLO electroweak corrections of order $O(\alpha_s \alpha^3)$
- 5-flavour scheme with massless bottom and charm quarks
- Full dependence on the CKM matrix (off-diagonal elements)
- Flavour anti-kt jet algorithm
- Predictions with factorization & normalization scale and PDF uncertainties for the NNPDF3.1 PDF set at NNLO
- Central renormalization and factorization scale: 0.5($E_{T,W}+p_{T,jc}$), $E_{T,W}^2=M_W^2+(p_{T,l+pT,\nu})^2$
- OS-SS cross section
- SS contributions enter at NLO (g → cc, SS=OS correction) and NNLO
- NNLO corrections contain SS double real effects with ccc and ccc final states

HF and charge identificacion Semileptonic c,b → µ decay (SL channel):

- Tight μ that satisfies:
 - Is one of the PF constituents of a jet with $p_{\tau}(jet) \ge 25$ GeV, $|\eta(jet)| \le 2.4$.
 - Non-isolated μ (isolation>0.2) with $p_{\tau}(\mu) \le 25$ GeV, $|\eta(\mu)| \le 2.1$.
- If several non-isolated μ candidates take the one with **highest** p_{τ}
- Charge identification of the charm quark through the charge of the μ -in-jet
- Charge definition: SS if the μ -in-jet has the same charge than the lepton from the W decay OS → $Q_{W \rightarrow e, \mu} \neq Q_{u \text{-in-jet}}$ SS → $Q_{W \rightarrow e, \mu} = Q_{u \text{-in-jet}}$

HF identificacion Inclusive HF hadron decays (SV channel):

• Reconstructed secondary vertex (SSV or IVF) in jet

• In case of several jets with SV in the event, take the **highest** p_{τ} **jet**

Charge identification

channel

•Charge of the SV vertex : Σq_{tracks}

• If vertex-charge == 0 use charge of closest PV-track. The sign of that track, the closest track to the Charm in the process of fragmentation, tells you whether we have a c or a cbar:

Charge definition:

•OS if charges of the SV and the lepton from the W decay are opposite $Q_{W\rightarrow e(\mu)} \neq Q_{SV}$

$$SS: Q_{W\rightarrow e(\mu)} = Q_{SV}$$