

7th RedLHC workshop - May 11, 2023

Carlos Escobar Ibáñez

Instituto de Física Corpuscular (IFIC) - CSIC/UV

The **Standard Model** is a **Quantum Field Theory**: Special Relativity + Quantum Mechanics

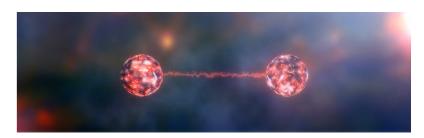
Standard Model measurements

→

Test fundamental properties of Quantum Mechanics

Entanglement is perhaps the most genuine and essential feature of Quantum Mechanics

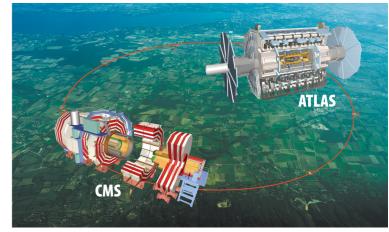
- If two (or more) particles become entangled, they remain connected even when separated by vast distances
- In other words, the quantum state of one particle cannot be described independently of the quantum state(s) of the other(s)



 $|\psi\rangle = |a_1\rangle_A \otimes |b_1\rangle_B + |a_2\rangle_A \otimes |b_2\rangle_B$

The **LHC** has the potential to explore fundamental properties of Quantum Mechanics such as **Entanglement**!

- It can be measured with data already recorded at the LHC
 → Run 2 dataset
- Measuring experimentally this fundamental property requires a very precise understanding of our detectors



The LHC is a top-quark factory... and the top quark is the ideal candidate for measuring spin correlations:

- Lifetime (~10-25 s) ≪ hadronization (~10-23 s) ≪ depolarization (~10-21 s)
 - Decays before forming bound states
 - Spin information preserved in the angular distribution of its decay products

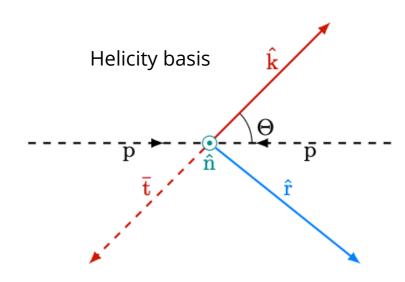
In SM, tt production:

• General form:

$$\rho = \frac{I_4 + \sum_i \left(B_i^+ \sigma^i + B_i^- \bar{\sigma}^i \right) + \sum_{i,j} C_{ij} \sigma^i \bar{\sigma}^j}{4}$$

- $\sigma^i/2, \bar{\sigma}^i/2$ spin operators of the top, antitop.
- B_i^+ , B_i^- characterize the spin polarizations, $B_i^+ = \langle \sigma^i \rangle$, $B_i^- = \langle \bar{\sigma}^i \rangle$.
- At LO $B_i^{\pm} = 0$.
- C_{ij} the $t\bar{t}$ spin correlations, $C_{ij} = \langle \sigma^i \bar{\sigma}^j \rangle$.
- Top-quark not polarised (at LO) in tt production in SM (parity invariant)
- But spins of t and t̄ strongly correlated (rich structure of spin correlations)

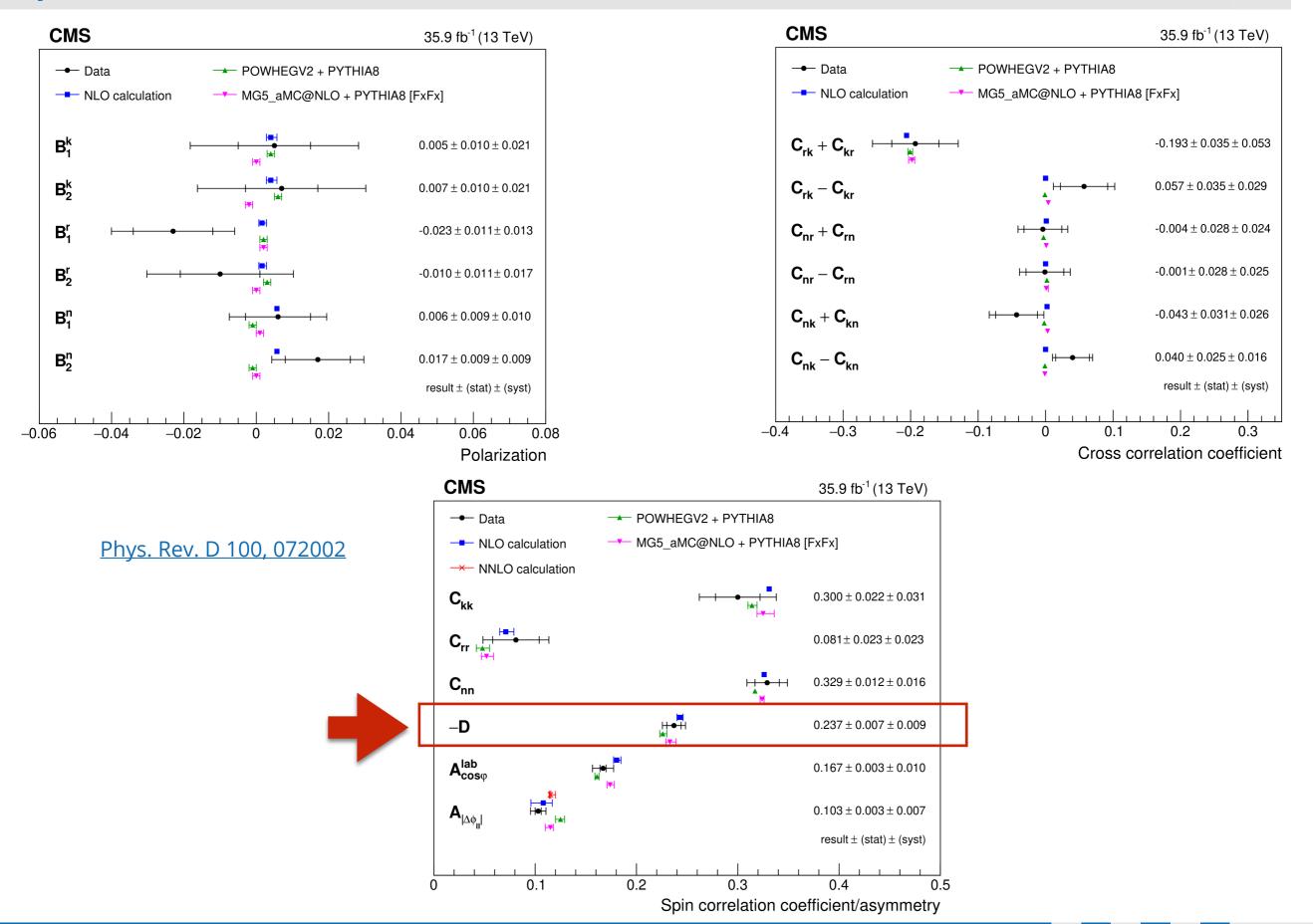
- Top-quark spins cannot be measured directly!
- This is done by measuring the **angle between spin axis and lepton** in parent top-quark rest frame
 - Helicity basis: $\{\hat{k}, \hat{r}, \hat{n}\}$:
 - \hat{k} direction of the top in the $t\bar{t}$ CM frame.
 - \hat{p} direction of the beam.
 - $-\cos\Theta = \hat{k}\cdot\hat{p}.$
 - $\hat{r} = (\hat{p} \cos\Theta\hat{k})/\sin\Theta.$
 - $\hat{n} = \hat{r} \times \hat{k}.$
 - Describe each individual process with a fixed direction.
 - Beam basis: $\{\hat{x}, \hat{y}, \hat{z}\}$:
 - \hat{z} along the beam axis.
 - \hat{x} , \hat{y} transverse directions to the beam.
 - After averaging: $C_x = C_y = C_{\perp}$.
 - Studying the total quantum state.



• Coefficients measured by CMS and ATLAS from diff. cross-section:

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_{+} d\cos\theta_{-}} = \frac{1}{4} \left(1 + B_{1} \cos\theta_{+} + B_{2} \cos\theta_{-} - C \cos\theta_{+} \cos\theta_{-} \right)$$

	Observable	Measured coefficient	Coefficient function	Symmetries
	$\cos \theta_1^k$	B_1^k	b_k^+	P-odd, CP-even
	$\cos \theta_2^{\tilde{k}}$	$B_2^{ar{k}}$	b_k^{-}	P-odd, CP-even
	$\cos \theta_1^r$	B_1^{r}	b_r^+	P-odd, CP-even
	$\cos \theta_2^r$	B_2^r	b_r^-	P-odd, CP-even
	$\cos \theta_1^n$	B_1^n	b_n^+	P-even, CP-even
4	$\cos \theta_2^n$	B_2^n	b_n^-	P-even, CP-even
Helicity basis k	$\cos \theta_1^{k*}$	B_1^{k*}	b_k^+	P-odd, CP-even
	$\cos \theta_2^{\hat{k}*}$	B_2^{k*}	b_k^-	P-odd, CP-even
$ \frac{\varphi}{\hat{\mathbf{r}}} $	$\cos \theta_1^{r*}$	B_1^{r*}	b_r^+	P-odd, CP-even
	$\cos heta_2^{r*}$	B_2^{r*}	b_r^-	P-odd, CP-even
	$\cos \theta_1^k \cos \theta_2^k$	C_{kk}	c_{kk}	P-even, CP-even
	$\cos \theta_1^r \cos \theta_2^r$	C_{rr}	c_{rr}	P-even, CP-even
	$\cos \theta_1^n \cos \theta_2^n$	C_{nn}	c_{nn}	P-even, CP-even
	$\cos \theta_1^r \cos \theta_2^k + \cos \theta_1^k \cos \theta_2^r$	$C_{rk} + C_{kr}$	c_{rk}	P-even, CP-even
	$\cos \theta_1^r \cos \theta_2^{\bar{k}} - \cos \theta_1^{\bar{k}} \cos \theta_2^{\bar{r}}$	$C_{rk}-C_{kr}$	c_n	P-even, CP-odd
	$\cos \theta_1^n \cos \theta_2^r + \cos \theta_1^r \cos \theta_2^n$	$C_{nr} + C_{rn}$	c_{nr}	P-odd, CP-even
	$\cos \theta_1^n \cos \theta_2^r - \cos \theta_1^r \cos \theta_2^n$	$C_{nr}-C_{rn}$	c_k	P-odd, CP-odd
	$\cos \theta_1^n \cos \theta_2^k + \cos \theta_1^k \cos \theta_2^n$	$C_{nk} + C_{kn}$	c_{kn}	P-odd, CP-even
	$\cos \theta_1^n \cos \theta_2^k - \cos \theta_1^k \cos \theta_2^n$	$C_{nk}-C_{kn}$	$-c_r$	P-odd, CP-odd
	$\cos \varphi$	D	$-(c_{kk}+c_{rr}+c_{nn})/3$	P-even, CP-even
	$\cos arphi_{ m lab}$	$A^{ ext{lab}}_{\cos arphi}$	_	_
	$ \Delta \phi_{\ell\ell} $	$A_{ \Delta\phi_{\ell\ell} }$	_	



Entanglement criterion

- Spin Correlations can be a classical property
 - Spin Correlations ≠ Quantum Entanglement!
 - However, **Quantum Entanglement** ⊂ **Spin-Correlations**
- Indeed, the link between spin correlations of top quarks and Quantum Information is recent (<u>Eur. Phys. J. Plus 136 (2021) 9, 907</u>...)
 - tt process represents a simple entangled system composed by two qubits
 - tt events → good candidates to test entanglement and Bell inequalities at high energy!

Entanglement criterion:
$$D = \frac{\operatorname{tr}[C]}{3}$$

where
$$\operatorname{tr}[C] = 2C_{\perp} + C_z = C_{rr} + C_{nn} + C_{kk}$$

No requirement to measure the spin density matrix!

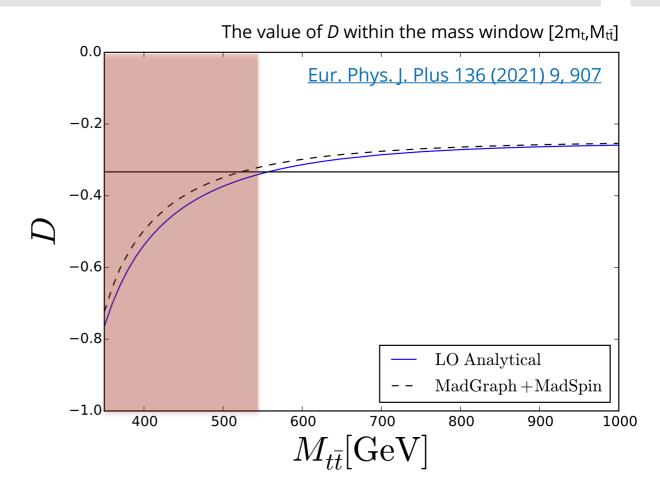
Entanglement condition

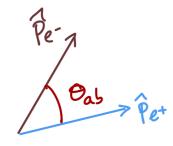
Upper bound on trace of spin density matrix: $D = \frac{\operatorname{tr}[C]}{3} < -\frac{1}{3}$

$$D = \frac{\operatorname{tr}[C]}{3} < -\frac{1}{3}$$

 Theory: simple observable from single differential normalized cross-section:

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_{ab}} = \frac{1}{2} \left(1 - \alpha_a \alpha_b D \cos\theta_{ab} \right)$$

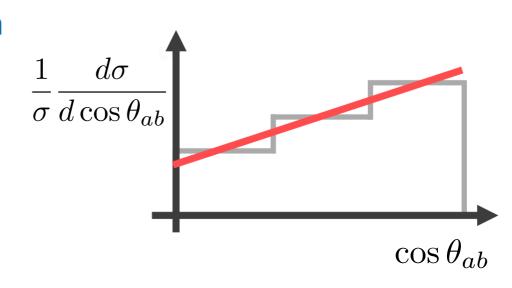




where is the angle between the two leptons in their respective top-quark parent rest-frame

• Theory: "just" measure $cos(\theta_{ab})$ in a low M(tt) region

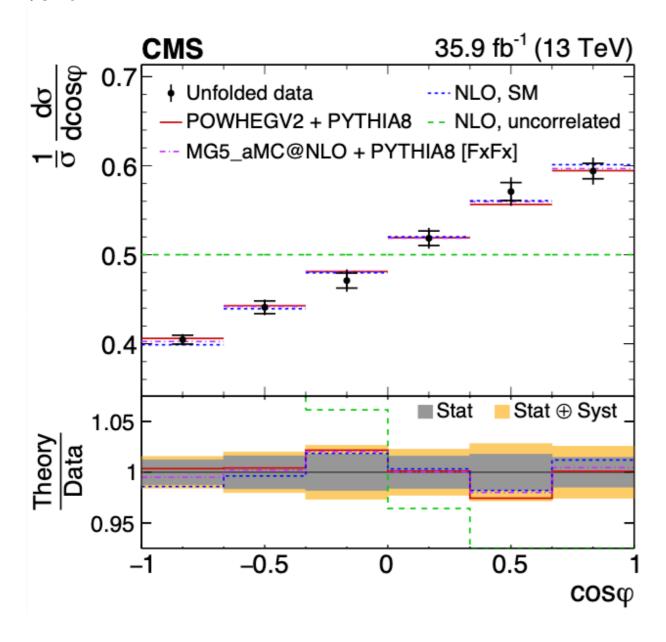
$$\left. \frac{1}{\sigma} \left. \frac{d\sigma}{d\cos\theta_{ab}} \right|_{m_{t\bar{t}} < M} = \frac{1}{2} \left(1 - D\cos\theta_{ab} \right)$$



D already measured though inclusively

Recently, D was measured inclusively on M(tt) by CMS:

- $D = -0.237 \pm 0.011 > -1/3$
- $\Delta D/D = 4.6\%$



Phys. Rev. D 100, 072002

• Spin Correlations ≠ Quantum Entanglement!

No public results yet neither from ATLAS nor CMS

- I cannot show you any result (though they exist) 🤗
- Good news: many people currently working on this topic!

ATLAS and CMS are working on two tt final states:

Dileptonic

2 opposite-sign leptons

≥ 2 jets (b-tagged)

≥ 1 b-tagged jets

Exclude Z-mass window

 $M_{t\bar{t}} < \sim 400 \text{ GeV}$

Challenge: reconstruct the neutrinos

Several techniques are available:

- Roots of quartic polynomial
- NeutrinoWeighter
- Sonnenschein method
- Ellipse method
- Use ML (new): Transformers (SPANet)

Lepton+jets

- 1 lepton
- >= 4 jets
- 2 jets must be b-tagged
- MET > 20 GeV
- $M_{t\bar{t}} < \sim 400 \text{ GeV}$

Challenge: tagging the correct jet(s)

High-multiplicity jet final state

Use ML for multi-jet final state:

Transformers (SPANet)

How we are trying to measure entanglement in tt:

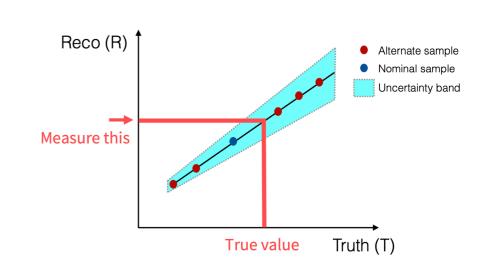
Unfold $cos(\theta_{ab})$, then extract D

- Correction of the detector effects is needed since efficiency decreases when the leptons approach collinearity
- Many unfolding techniques exist:
 - Iterative Bayesian unfolding
 - Profile likelihood unfolding
 - SVD unfolding

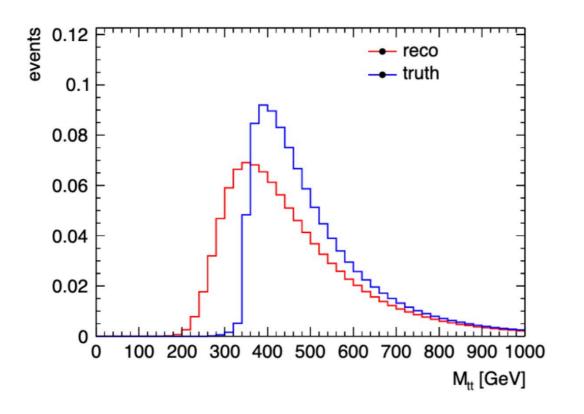
Stress tests (SM bias) needed → Issues appear!

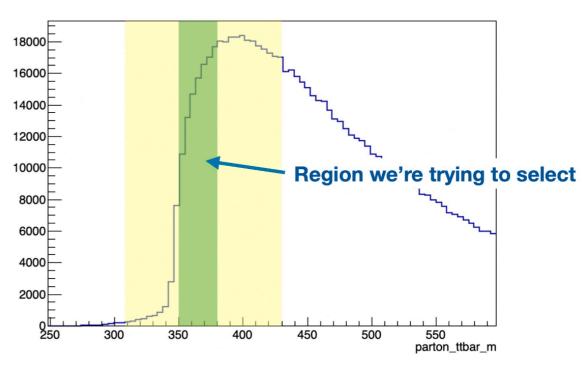
Extract D from reconstructed events, then extract D

- Calibration Curve
- Problem how to produce alternate samples
 - This is not a free parameter in the SM
 - In MC event generators, not an input parameter which we can alter
 - Reweighting? → Issues appear!
 - Alter slope of $cos(\theta_{ab})$ artificially
 - Did not preserve linearity
 - Preserved inclusive value of D



The problem is the resolution of $M_{t\bar{t}}$





- Measuring the entanglement in tt events requires better (great) top-quark reconstruction when considering such narrow phase-space
- Modelling effects affect systematics estimation

Theory: "just" measure $cos(\theta_{ab})$ in a low M($t\bar{t}$) region

Experiment: wait, this is not so easy

Conclusions

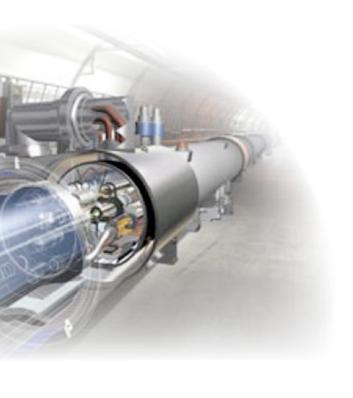
- First studies of the measurement of entanglement between quarks
- Can be detected at the LHC with current recorded data (Run2)
- Simple observable from single differential cross-section:

$$D = \frac{\operatorname{tr}[C]}{3} < -\frac{1}{3} \longrightarrow \frac{1}{\sigma} \left. \frac{d\sigma}{d\cos\theta_{ab}} \right|_{m_{t\bar{t}} < M} = \frac{1}{2} \left(1 - D\cos\theta_{ab} \right)$$

- Several tt final states being studied
- Several techniques being explored to extract D
- Real requirement for superior top-quark reconstruction
- Narrow phase-space is problematic

"Quantum entanglement is theoretically clean, but experimentally quite nasty" — Alan Barr —

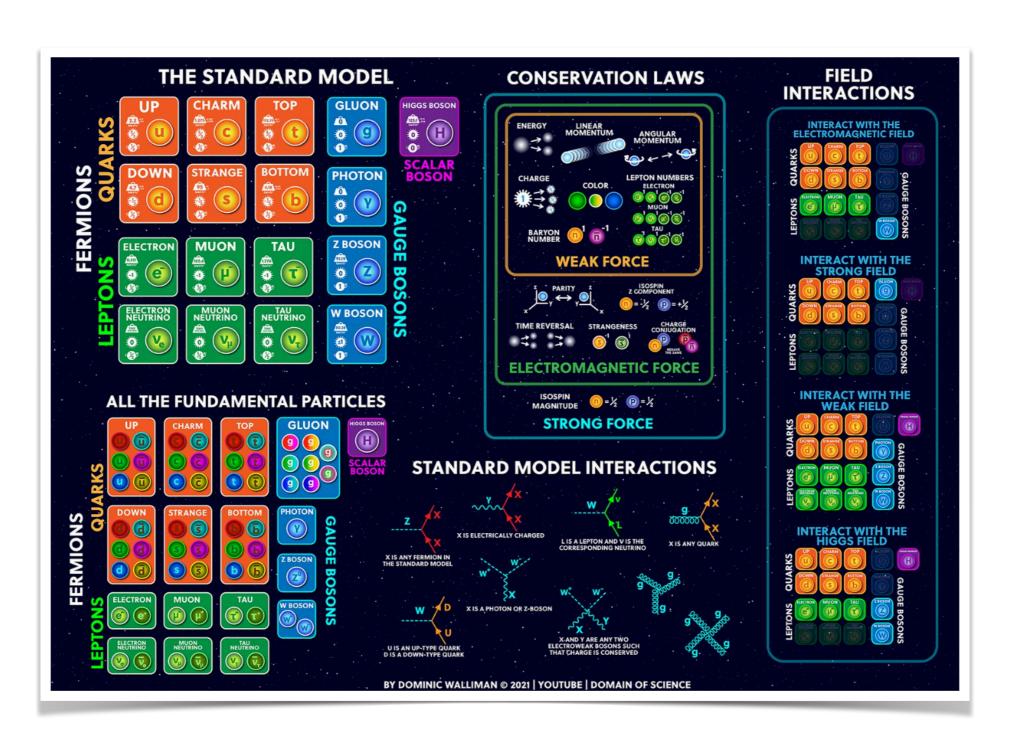
• ATLAS and CMS: work in progress, please stay tuned!



BACKUP

The **Standard Model** is a **Quantum Field Theory**:

- Special Relativity
- Quantum Mechanics



The **Standard Model** is a **Quantum Field Theory**:

- Special Relativity
- Quantum Mechanics

Fundamental properties of Quantum Mechanics can be tested via the Standard Model

Standard Model ____ Test features of Quantum Mechanics

Entanglement is perhaps the most genuine and essential feature of Quantum Mechanics

- If two (or more) particles become entangled, they remain connected even when separated by vast distances
- In other words, the quantum state of one particle cannot be described independently of the quantum state(s) of the other(s)

$$|\psi\rangle = |a_1\rangle_A \otimes |b_1\rangle_B + |a_2\rangle_A \otimes |b_2\rangle_B$$

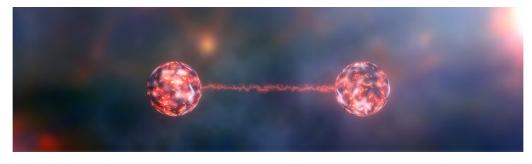
Fundamental properties of Quantum Mechanics can be tested via the Standard Model

Standard Model measurements

Test features of Quantum Mechanics

Entanglement is perhaps the most genuine and essential feature of Quantum Mechanics

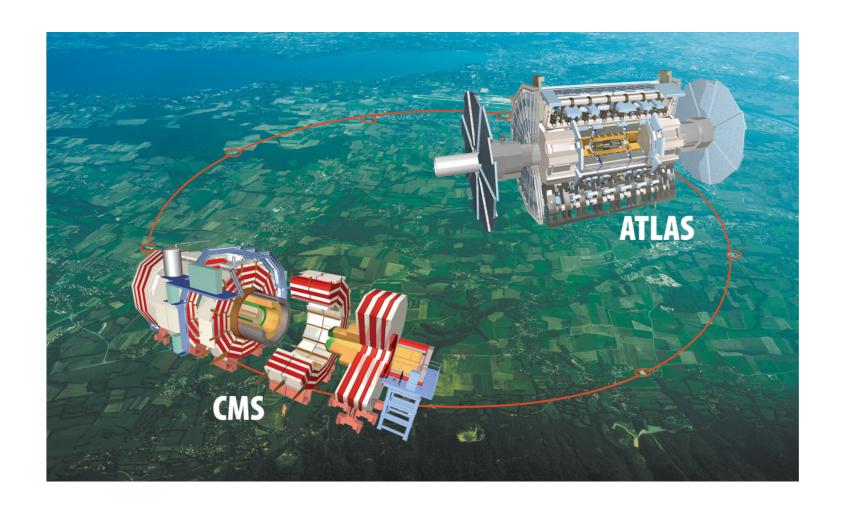
- In other words, the quantum state of one particle cannot be described independently of the quantum state(s) of the other(s)
- EPR paradox → Information travel faster than light?
 - Contradicts the theory of relativity
 - Conclusion: the theory of Quantum Mechanics is incomplete



$$|\psi\rangle = |a_1\rangle_A \otimes |b_1\rangle_B + |a_2\rangle_A \otimes |b_2\rangle_B$$

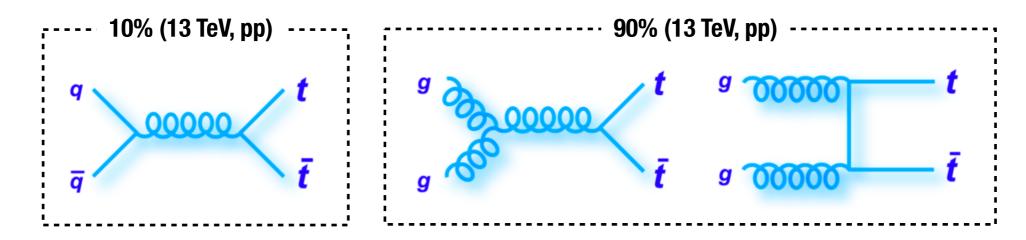
The **LHC** has the potential to explore fundamental properties of Quantum Mechanics such as **Entanglement**!

- It can be measured with data already recorded at the LHC → Run 2 dataset
- Measuring experimentally this fundamental property requires a very precise understanding of our detectors



The **LHC** is a **top-quark factory**:

- Top quarks are abundantly produced at the LHC
 - At low luminosity (i.e. 10^{32} cm⁻² s⁻¹ @ 7 TeV): ~60 tt every hour
 - At design luminosity (i.e. 10^{34} cm⁻² s⁻¹ @ 14 TeV): ~8 tt every second



Unique properties of the top quark:

- Heaviest known elementary particle
- Strongest Yukawa coupling (almost unity)
- Smallest cross-section of all of the SM particles
- Lifetime ($\sim 10^{-25}$ s) \ll hadronization ($\sim 10^{-23}$ s) \ll depolarization ($\sim 10^{-21}$ s)
 - The decay products preserve the spin information of the top quark
 - Only quark whose most of its properties can be directly measured!
- The top quark decays almost exclusively (>99%, i.e. $|V_{tb}| \approx 0.999$) to t \rightarrow Wb (@LO)
- New physics: a key player in most solutions to the problems of the SM

Hidden variables

By EPR, each particle "carries" variables that knows the state before the measurement ⇒ There are some hidden variables that are missing in order to have a full theory

The Copenhagen Interpretation: superposition of states until a measurement is done

Bell's Inequality

- If local hidden variables holds, they should satisfy some inequality
- C(x, y) are the correlations between different measurements at different detectors
- The parameters a,b,c are different directions for the measurement
- Original form: 1+C(b,c)≥|C(a,b)-C(a,c)|

Top quark is the ideal candidate for measuring spin correlations:

- extremely short lifetime → decays before forming bound states
- spin information preserved in the angular distribution of its decay products
- top-quark spin observables (expected to be) well predicted by perturbative QCD

In SM, tt production:

• General form:

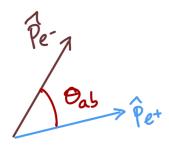
$$\rho = \frac{I_4 + \sum_i \left(B_i^+ \sigma^i + B_i^- \bar{\sigma}^i \right) + \sum_{i,j} C_{ij} \sigma^i \bar{\sigma}^j}{4}$$

- $\sigma^i/2, \bar{\sigma}^i/2$ spin operators of the top, antitop.
- B_i^+ , B_i^- characterize the spin polarizations, $B_i^+ = \langle \sigma^i \rangle$, $B_i^- = \langle \bar{\sigma}^i \rangle$.
- At LO $B_i^{\pm} = 0$.
- C_{ij} the $t\bar{t}$ spin correlations, $C_{ij} = \langle \sigma^i \bar{\sigma}^j \rangle$.
- Top-quark not polarised (at LO) in tt production in SM (parity invariant)
- But spins of t and t strongly correlated (rich structure of spin correlations)

D observable

 Theory: simple observable from single differential normalized cross-section:

$$\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_{ab}} = \frac{1}{2} \left(1 - \alpha_a \alpha_b D \cos\theta_{ab} \right)$$



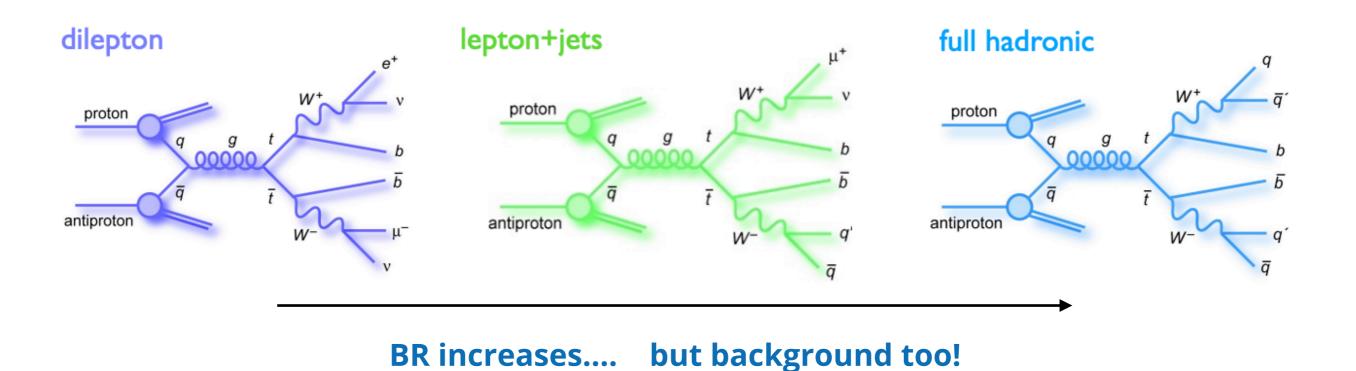
where is the angle between the two leptons in their respective top-quark parent rest-frame

	<i>b</i> -quark	W^+	l^+	$ar{d}$ -quark or $ar{s}$ -quark	u-quark or c -quark
$\alpha_i \text{ (LO)}$	-0.41	0.41	1	1	-0.31
α_i (NLO)	-0.39	0.39	0.998	0.97	-0.32

No public results yet neither from ATLAS nor CMS

- I cannot show you any result (though they exist)
- Good news: many people currently working on this topic!

From the experimental point of view, we have three options:



Challenge: reconstruct the neutrinos

Challenge: tagging the correct jet(s)

High-multiplicity jet final state