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Basics /3

Because the Higgs boson has spin zero,in H = VV [V = W,Z] the VV pair is

produced in a state of zero total angular momentum.

V at rest in H ¢.m. frame

V not at rest but yet angular
momentum conservation
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Basics 2/3

For a weak boson, the 3x3 density matrix can be written as a linear
combination of the identity [L = 0] plus irreducible tensors Ttm [L = 1,2]
JAAS, Bernabeu, 1508.04592
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Basics 3/3

For a systems of two particles, this is done for each one. For a VV pair, the
density matrix is

p = (19><9 + A7 Thr ® 1353 + AZprlaws ® Ty + CL1M1L2M2TJ‘L411 = T]‘L/-’Z)
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The parameterisation of the VV spin state, involving 80
independent parameters, is remarkably simple
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Entanglement in H = VV 1/2

This is a decay 0 = | + |.Angular momentum conservation implies that
many A and C coefficients are zero. The non-zero ones are
Aio — _A%O ; A%O — Ago

Cro10, C2020, Cio20, C2010

* * *
Clll—l — Cl—lll ’ 0222—2 — Cf2—222 ) C1212—1 — C(2—121 )

* %
C'112—1 — 01—121 ) C211—1 = C'2—111

and the 9%X9 p matrix is sparse [relations among coefficients used below]
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Entanglement in H = VV 2/2

Necessary criterion for separability: Peres, quant-ph/9604005
Horodecki, quant-ph/9703004

taking the transpose in subspace of B [for example] the resulting density
operator is valid.

Example: composite system A ® B with dim Ha = n, dim Hs = m

, ki kil
P;j are m x m matrices, ()" = pj;

(nxm) X (nxm) matrix
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Quite difficult in general, but in our case it reduces to

Peres-Horodecki
Separability <:> Cata—1 =0, Chaz_g =0

H — VV special case



Entanglement in H =& ZZ — 4¢ 1/2

The decay can be fully reconstructed, and the As and Cs measured.

The 4-d angular distribution has a very compact form

1 do [
O dQldQQ —(47'(')2

+B£13%2CL1M1L2M2YI{\141 (Ql)YI{\gQ(QQ)] eV

1 —|_ B}JlAilMly]_—j,\fl (Ql) _I_ B%QA%QMQYI{gQ (Q2) By :—\/%W, Ne = gz’_gz%

Because spherical harmonics are orthogonal functions, to pick selected

terms in the distribution one just has to take averages -

1 do 1
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Entanglement in H =& ZZ — 4¢ 2/2

Prospects
~ Parton level, no detector simulation, approximate eff [0.25] injected
~ Background not included [1/4 size of signal]

~ Only statistical uncertainties, estimated with pseudo-experiments

C212-1 Coo2-2 Significance

Run 2 + 3:300 fb1 -0.98 + 0.31 0.60 = 0.37 30

HL-LHC : 3 ab! -0.95 £ 0.10 0.60 + 0.12 many o




Entanglement in H =& WW — 202y 1/3

The decay cannot be reliably reconstructed because of the two neutrinos:

the system is underconstrained.

Instead, for entanglement a binary test can be made in lab frame

separability
o1 Vs hypothesis

using dilepton kinematical distributions.

Note: such a trick is not possible to test Bell inequalities &



Entanglement in H =& WW — 272y

Parton-level plots
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Though the discrimination from
AOD is excellent, transverse
boosts from ISR [dashed lines]
have a significant impact in the

distribution.
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Entanglement in H =& WW — 202y 3/3

Results after Delphes simulation, el channel, L = |38 fb-!
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Bell inequalities in H = ZZ 1/2

There is an inequality for a pair of spin-| systems. For any observables A|,
A2 [on system A], By, B2 [on system B] CGLMP PRL ‘02
Is=P(A1=B1)+P(B1=A2+1)+ P(Ay = B3) + P(By = Ay)
[P(Ay =By — 1)+ P(B, = Ay) + P(Ay =By — 1)+ P(By = A, —1)] < 2

if the systems are classical.

There is a well-known choice of A|,A>, Bi, B> that is believed to maximise |3

for the spin-singlet state

1
!¢>=%(\. ) —100) +] = +))

However, it is not optimal for the mixed spin state of the ZZ pair resulting

from H decay
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Bell inequalities in H = ZZ
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An improved Bell operator for this case gives a larger I3 for 3 > |
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