Searches for long-lived particles at the CMS detector

Pablo Martínez Ruiz del Árbol

7th Red LHC Workshop Madrid, 10-12 May

The case for long-lived particles

- * A decade of searches for new physics at the LHC experiments has yielded negative results
- * However new physics events might have occurred at the LHC although in unusal topologies
- * If true, we have missed them because our reconstrution methods are not optimal for those
- * Long-lived particles are theoretically well motivated examples that lie on this category
- > Small decay widths give rise to particles with a large life time that decay far from the center

1. Small coupling to SM Example: Higgs portal to hidden sectors

2. Scale suppression

Example: Gauge mediated SUSY (SUSY-breaking scale suppression)

3. Phase space suppression

Example: Small mass splitting between NLSP and LSP

A zoo of unusual topologies

- * Reconstruction algorithms are optimized to reconstruct particles coming from the center
- Long Lived Particles can produce many different "displaced" topologies

Searches during Run 2 / Run 3 ongoing

- * A large program of LLP searches has been deployed by CMS during Run 2
 - Some new analysis still coming (Displaced Dilepton Vertices at IFCA)

Overview of CMS long-lived particle searches

New analyses also being done with Run 3 data (Displaced Muons IFCA + Uniovi)

The MTD: LLPs at the HL-LHC

- * Time measurement of charged particles with 30-40 ps at the HL-LHC start and < 60 ps at 3 ab⁻¹
- * Barrel Timing Layer: arrays of LYSO crystal bars + SiPMs at both ends

BTL: LYSO bars + SiPM read-out

- TK/ECAL interface ~ 45 mm thick
- $|\eta| < 1.45$ and $p_{T} > 0.7$ GeV
- Active area \sim 38 m²; 332k channels
- Fluence at 3 ab⁻¹: $2x10^{14} n_{eq}/cm^2$

ETL:Si with internal gain (LGAD)

- On the HGC nose ~ 65 mm thick
- 1.6 < | η | < 3.0
- Active area $\sim 14 \text{ m}^2$; 8.5M channels
- Fluence at 3 ab⁻¹: up to $2x10^{15}$ n_{eq} /cm²

The MTD: LLPs at the HL-LHC

- * The MTD will add a new time dimension on the tracks and therefore also to the vertices
- * This will be extremely useful to clean-up the high pile-up at the LHC (PU ~ 200)
- * But it will also bring unique possibilities for LLP physics because we can measure delays!

Delayed photons with the MTD

- SUSY model with gluino production decaying into quarks and a long-lived neutralino
 - Neutralino then decaying into photon-Gravitino
- > The delay between the photon and the PV is used to discriminate signal
 - Photon time is measured by the ECAL timing
 - The Primary Vertex time is calculated with the MTD

$$\Delta t_{\text{delay}} = \frac{l_X}{\beta_X} + \frac{l_a}{\beta_a} - \frac{l_{\text{SM}}}{\beta_{SM}}$$

Delayed leptons: mass reconstruction

- * Consider stop pair production in a SUSY model with Gauge Mediated Symmetry Breaking
- $^{>}$ Search for long-lived neutralinos decaying into Z (leptons) + Gravitino with m(G) ~ 0
- This signature leads to a pair of displaced leptons
- > Time difference between PV and lepton vertex used to discriminate
- \rightarrow The lepton vertex position and the Δ t allow to estimate neutralino mass

$$\beta = \frac{\Delta L}{\Delta t}$$

CMS-TDR-020

Higgs mediator with displaced jets

- * Higgs portal model with a Higgs boson decaying into 2 long-lived scalars decaying into jets
- Jet time estimated as a weighted average of charged tracks measured in the MTD
- * The time difference between the jet and the PV is used to discriminate signal from background

CMS-TDR-020

Conclusions

- * New Physics could show up in the experiments in the form of unusual topologies
- * The case of Long-Lived Particles is one of the best theoretically motivated examples
- * CMS has an extensive program of LLP searches both in Run2 and incoming for Run3
- In the HL-LHC CMS will bring unique opportunities for LLP searches by using the MTD
- * This will open a new dimension for the searches: the delay of the particles
- A few examples have been given showing how the delay can boost the search sensitivity
- More information at the MTD TDR