

Universidad Autónoma de Madrid

7th Red LHC workshop, 10th-12th May 2023, IFT

Measurements of Higgs couplings in $H \rightarrow \gamma \gamma$ at 13 TeV with the ATLAS experiment

Ana Cueto (UAM), on behalf of the ATLAS Collaboration

HIGG-2020-16

Financiado por la Unión Europea-NextGenerationEU

El trabajo es parte de la ayuda RYC2021-031273, financiada por MCIN/AEI/10.13039/501100011033 y por la Unión Europea «NextGenerationEU»

Introduction

- * Studies of Higgs properties and production rates are one of the main lines of the LHC research program
- * The diphoton channel offers a very clean signature in spite of its small branching ratio

Simplified template cross sections

- * Measure cross-sections in the different production modes, agnostic to Higgs decays, in mutually exclusive regions of the phase-space (bins)
 - ✓ Maximizes experimental sensitivity
 - ✓ Isolates possible BSM effects
 - ✓ Minimize the dependence on theoretical uncertainties (folded in the measurements)

- -No fully fiducial measurement
 - No Higgs decay information (for the moment)

Analysis strategy

Selection

- Target H-> $\gamma \gamma$ decays
 - At least two tight-ID and isolated photons
 - Dedicated vertex selection using photon pointing information
 - ▶ Additional objects: jets, b-jets, muons, electrons and missing energy used in the categorisation

Categorisation

Define orthogonal reco categories to target specific STXS bins

Cross section extraction

Signal+Background parametric model for each category. Simultaneous fit over $m_{\gamma\gamma}$

Event categorisation

- Each event is assigned to the optimal category based on its properties in a global way
- **Targeting directly the STXS 1.2 bins (with minimal changes)

Categorization in 3 steps

- Signal only multiclass BDT
- Usage of multiclass output ⇒ D-optimality optimizes both error and correlation on final measurements
- Binary BDTs in each multiclass category: final significance scan maximizing significance

Event categorisation

6

 $t\bar{t}H, p_{-}^{H} \ge 300 \text{ GeV}$

 $t\bar{t}H$, 200 $\leq p_{_{T}}^{H} < 300 \text{ GeV}$ $t\bar{t}H$, $120 \le p_{_T}^H < 200 \text{ GeV}$

 $t\bar{t}H$, $60 \le p_{_{T}}^{H} < 120 \text{ GeV}$

 $t\bar{t}H, p_{\tau}^{H} < 60 \text{ GeV}$

HII, p_{τ}^{V} < 150 GeV

 $qq \rightarrow Hlv, p_{\tau}^{V} \ge 150 \text{ GeV}$

 $gg \rightarrow H, p_{\tau}^{H} \ge 450 \text{ GeV}$

gg \rightarrow H, 0-jet, $p_{\tau}^{H} \ge 10 \text{ GeV}$

 $gg \rightarrow H$, 0-jet, $p_{\tau}^{H} < 10 \text{ GeV}$

Good diagonality between targeted STXS bin and analysis category

More analysis categories than STXS regions (additional splits in signal purity not shown in the image)

ATLAS Simulation 139 fb⁻¹ 3 3

 $H\rightarrow \gamma\gamma$, $\sqrt{s}=13$ TeV 5 15 37 21 4 16 30 25 4 1 28 1 5 3 2

2 9 6 6 21 1 1 4 12 60 1 3 7 6 3 11 7 50 2 9 2 40 5 5 2 2 30 31 16 6 6 12 4 3 2 2 2 13 7 4 21 15 18 3 1 1 1 13 **27** 3 10 19 2 1 1

qq → Hqq, ≥ 2-jets, 350 ≤ qq → Hqq, ≥ 2-jets, 700 ≤ qq → Hqq, ≥ 2-jets, qq → Hqq, ≥ 2-jets, 350 ≤ qq → Hqq, ≥ 2-jets, 700 ≤ qq → Hqq, ≥ 2-jets, 700 ≤ qq → Hqq, ≥ 2-jets, 700 ≤ $gg \rightarrow H, \geq 2$ -jet $gg \rightarrow H, \geq 2$ -jets, m_{jj} $gg \rightarrow H, \geq 2$ -jets, m_{jj} $gg \rightarrow H, \geq 2$ -jets, 350 $gg \rightarrow H, \geq 2$ -jets, $700 \leq$ $gg \rightarrow H, \geq 2$ -jets, $700 \leq$

Analysis Category

Signal and background modelling

- **Signal processes generated mostly by Powheg+Pythia (NNLOPs for ggF, MiNLO for VH), tH with aMC@NLO+Pythia
- Double-sided crystal ball fits in individual categories

 $m_{\gamma\gamma}$ [GeV]

- Background templates from $\gamma\gamma$ QCD Sherpa NLO (multi-leg), $V\gamma\gamma$ from Sherpa NLO and $tt\gamma\gamma$ in MadGraph+Pythia at LO
- \clubsuit Data-driven background decomposition to extract $\gamma\gamma$, γ j and jj contributions
- Spurious signal test to select analytical function describing the background and its bias
 - Smoothed templates with GPR in high stat. categories

Uncertainties

Theory uncertainties even larger than experimental uncertainties for inclusive measurement

Clear dominance of parton shower uncertainties in VBF

Uncertainty source	Δμ [%]
Theory uncertainties	
Higher-Order QCD Terms	±3.8
Branching Ratio	±3.0
Underlying Event and Parton Shower	± 2.5
PDF and α_s	± 2.1
Matrix Element	±1.0
Modeling of Heavy Flavor Jets in non- $t\bar{t}H$ Processes	< ±1
Experimental uncertainties	
Photon energy resolution	±2.8
Photon efficiency	± 2.6
Luminosity	±1.8
Pile-up	± 1.5
Background modelling	± 1.3
Photon energy scale	$< \pm 1$
$ m Jet/\it E_{ m T}^{miss}$	$< \pm 1$
Flavour tagging	$< \pm 1$
Leptons	< ±1
Higgs boson mass	< ±1

ATLAS

Parton Shower VBF

Results

$$\mu = 1.04^{+0.10}_{-0.09} = 1.04 \pm 0.06 \text{ (stat.)}^{+0.06}_{-0.05} \text{ (theory syst.)}^{+0.05}_{-0.04} \text{ (exp. syst.)}.$$

Results

- SM expectations from MC normalised to the best-known total cross section according to the LHC Higgs WG
- Uncertainties of 10% in ggF
- Negative best fit value in ZH (observed yield below the background expectation)
- Observed (expected) limit on tH cross section of 10 (6.8) times the SM
- 28 STXS bins measured (merging of bins based on expected sensitivity)
 - ≥ 93% compatibility with the SM

And that was only a part of the story...

... and the Higgs is still there in Run 3.
STAY TUNED!

... combinations with other channels $^{\sigma\times\,B}$ normalized to SM prediction

11

Thanks!