Probing new physics with charge asymmetries in 2 same-sign leptons plus jets final states

Rosa María Sandá Seoane

Instituto de Física Teórica (UAM-CSIC) In colaboration with E. Arganda, L. Da Rold, A. Juste Rozas, A. D. Medina

> 7th Red LHC Workshop May 11, 2023

Motivation

• Dominant SM contribution to $2SS\ell$ (with $\ell=e,\mu$) with jets $(n_j\geqslant 2)$: $t\bar{t}W$. Most measurements in ATLAS & CMS give slightly higher x-section than theoretical prediction.

$$\sigma = 890 \pm 90 \text{ fb} \text{ vs. } \sigma^{th} = 722^{+70}_{-78} \text{ fb}$$

- Still large (statistical) uncertainties.
- Major background in other rare processes like $t\bar{t}H$ and $t\bar{t}t\bar{t}$.
- $t\bar{t}W$ has charge-asymmetric production (of $t\bar{t}W^+$ and $t\bar{t}W^-$) and it is an opportunity to measure it.
 - Measuring leptonic asymmetry at the LHC is very challenging due to the symmetry of the proton-proton collisions.
 - Both inclusive as differential cross-sections give us information on the charge asymmetry!

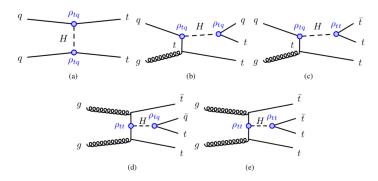
Motivation

• Dominant SM contribution to $2SS\ell$ (with $\ell = e, \mu$) with jets $(n_i \ge 2)$: ttW. Most measurements in ATLAS & CMS give slightly higher x-section than theoretical prediction.

$$\sigma = 890 \pm 90 \text{ fb} \text{ vs. } \sigma^{th} = 722^{+70}_{-78} \text{ fb}$$

- Still large (statistical) uncertainties.
- Major background in other rare processes like $t\bar{t}H$ and $t\bar{t}t\bar{t}$.
- $t\bar{t}W$ has charge-asymmetric production (of $t\bar{t}W^+$ and $t\bar{t}W^-$) and it is an opportunity to measure it.
 - Measuring leptonic asymmetry at the LHC is very challenging due to the symmetry of the proton-proton collisions.
 - Both inclusive as differential cross-sections give us information on the charge asymmetry!

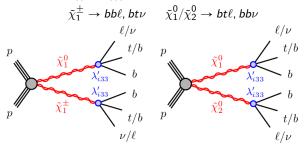
Measuring differential charge asymmetries in $2SS\ell$ + jets can show us New Physics!


Main Goal

Study the impact of 3 different NP models in the $2SS\ell + n_j \ge 2$, with $t\bar{t}W$ as the main background, measuring differential charge asymmetries with respect to different kinematic variables. The NP signals are:

- A heavy scalar/pseudoscalar (H/A) arising from a flavour violating 2HDM.
- A simplified RPV MSSM model with electrowikino production (higgsino/wino-like).
- An effective theory with 4-quark operators of dimension 6.

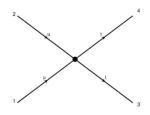
Flavour violating 2HDM

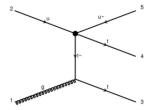

- A heavy neutral (pseudo) scalar (A) H lighter than the (scalar) pseudoscalar and charge states, or a new singlet (A) H.
- At effective level, we only consider couplings to up-type fermions: $\mathcal{L} = \frac{y_{i,j}}{\sqrt{2}} H u_i u_j \ (i,j \ \text{generation indices})$

Diagrams with (pseudo) scalar that contribute to the final state.

RPV MSSM

- MSSM with non-conserved R-parity → SUSY particles do not have to be produced in pairs, are not stable, and decay into SM particles.
- Simplified model with 2 scenarios: neutralinos and charginos being higgsino/wino-like.
- We take $\tilde{\chi}_1^\pm$, $\tilde{\chi}_1^0$ and $\tilde{\chi}_2^0$ as degenerate, and the rest of susy particles at the TeV order.
- We consider only $\lambda_{233}^{'}=\lambda_{333}^{'}$ (motivated by B-anomalies) which give




Feynman diagrams for RPV SUSY.

4q-FCNC

- We consider dimension 6 operators modeling the effects of integrated heavy particles.
- The final states that contribute to the asymmetry are tt, ttū and their conjugates.
- For simplicity, we only select 2 color singlet operators from the Buchmuller-Wyler base (with $Q_{L_1}=(u_L,d_L)$ and $Q_{L_3}=(t_L,b_L)$):

$$\mathcal{Q}_u^{(1)} = \left(\overline{t}_R\gamma_\mu u_R\right)^2 \qquad \mathcal{Q}_{qu}^{(1)} = \left(\bar{Q}_{L_3}u_R\right)\left(\bar{u}_R Q_{L_1}\right)$$

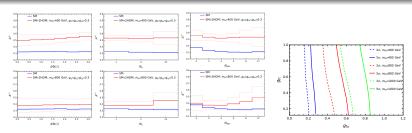
Representative Feynman diagrams of $t\bar{t}$ and $t\bar{t}j$ production in effective theory.

Final state

 $2SS\ell$ ($\ell = e, \mu$) with jets, and inclusive (exclusive) selection of b-tagged jets. Selection cuts extracted from ATLAS-CONF-2019-045:

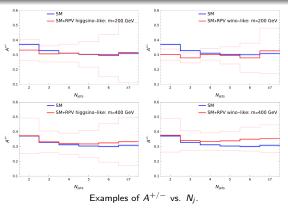
- ullet Two very tight ($\eta < 2/2.5$ for e/μ) same-sign leptons with $p_T > 20$ GeV.
- No τ_{had} candidates.
- $m(\ell^{\pm}, \ell^{\pm}) > 12 \text{ GeV}$
- $n_i > 2$
- Inclusive $n_b > 1$ (exclusive $n_b = 1$, exclusive $n_b = 2$ and inclusive $n_b \ge 3$).

Set up

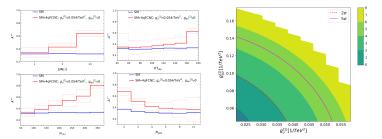

- We generate background $(t\bar{t}W)$ and signal events with MadGraph, Pythia8 (with Monash Tune) and Delphes at $\sqrt{s} = 13$ TeV and an integrated luminosity of 139 fb $^{-1}$.
- We reproduce Events/bin vs. N_i from ATLAS-CONF-2019-045 for $t\bar{t}W$ as event generation validation.
- We also simulate other SM backgrounds for uncertainties estimation: $t\bar{t}H,t\bar{t}\ell\ell$ and $W\ell\ell$
- Considering σ_{\pm} as the positive/negative 2SS ℓ , we define the charge asymmetry

$$A^{+/-} = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$$

- We estimate $A_i^{+/-}$ in bins of N_j (and N_b , H_{T_i} , $H_{T_{lep}}$, $m_{inv}(\ell,\ell)$, $\Delta\eta(\ell,\ell)$, $\Delta\Phi(\ell,\ell)$, Eff_{mass}).
- We assume statistical uncertainties are dominant.


Results: Flavour-violating 2HDM

Left: Examples of $A^{+/-}$ vs. $\Delta\Phi(\ell,\ell)$, N_b and N_j . Right: Gaussian significance vs. $g_{tu}-g_{tt}$ estimated with $A^{+/-}$ vs. N_{jets} .


- Charge asymmetries are able to probe flavour-violating 2HDM for all the considered masses $(m_{H/A} \in [400, 1000] \text{ GeV})$.
- If $g_{tu} > 0$, always more charge asymmetric than the SM, both for extra H/A.
- Binning in different kinematic variables for the differential asymmetries gives more information to distinguish/discard models.

Results: RPV MSSM

- Charge asymmetries are not sensitive to the RPV MSSM model.
- Significance does not improve binning in other kinematic observables, or with exclusive selection in n_b .
- Dependence on the mass of the electrowikinos in the asymmetry. For $m \in [600, 800]$ GeV no separation at all from the SM.

Results: 4q-FCNC

Left: Examples of $A^{+/-}$ vs. $\Delta\Phi(\ell,\ell)$, H_{Tlep} , $m_{inv}(\ell,\ell)$ and N_j . Right: Gaussian significance vs. $g_u^{(1)} - g_{qu}^{(1)}$ estimated with $A^{+/-}$ vs. N_{jets} .

- The charge asymmetries for all kinematic variables are sensitive to the model with similar χ^2 .
- $\bullet \ \ \text{More sensitive to} \ \ \mathcal{Q}_u^{(1)} = (\bar{t}_R \gamma_\mu u_R)^2 \ \ \text{than to} \ \ \mathcal{Q}_{qu}^{(1)} = (\bar{Q}_{L_3} u_R) (\bar{u}_R Q_{L_1}).$
- In all cases, the model is always more charge-asymmetric than the SM.

Conclusions

- Differential charge asymmetries in the 2SSℓ with jets final state are sensitive to probe NP such as the proposed flavour violating 2HDM and effective 4-quark operator scenario.
- No sensitivity to the RPV MSSM at $\sqrt{s} = 13$ TeV and 139 fb⁻¹, for degenerate electrowikinos higgsinos/wino-like with $m \in [200, 800]$ GeV.
- The inclusive $n_b > 1$ selection is the more sensitive in all scenarios.
- Significance analysis focuses on asymmetries vs. N_j, but all the other kinematic observables are also sensitive to NP and help to distinguish between models.

Conclusions

- Differential charge asymmetries in the $2SS\ell$ with jets final state are sensitive to probe NP such as the proposed flavour violating 2HDM and effective 4-quark operator scenario.
- No sensitivity to the RPV MSSM at $\sqrt{s} = 13$ TeV and 139 fb⁻¹, for degenerate electrowikinos higgsinos/wino-like with $m \in [200, 800]$ GeV.
- The inclusive $n_b > 1$ selection is the more sensitive in all scenarios.
- Significance analysis focuses on asymmetries vs. N_j, but all the other kinematic observables are also sensitive to NP and help to distinguish between models.

Stay tuned for more results!

Thank you!