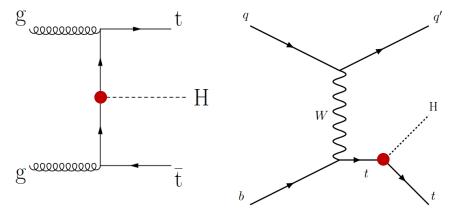
ttX and tX measurements at the CMS experiment

Red LHC 2023 IFT, Madrid 10-12 May 2023

Clara Ramón Álvarez* On behalf of the CMS Collaboration

*Partially funded by Consejería de Ciencia, Innovación y Universidad (Gobierno del Principado de Asturias), through "Ayudas del Programa Severo Ochoa".

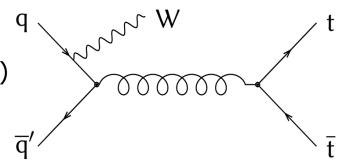
Grant PID2020-113341RB-100 funded by

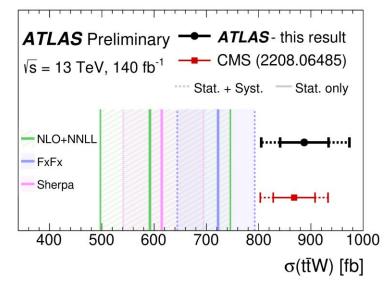

Introduction

Aim: Study the production of a top antitop quark pair produced in association with a H or W boson using full run 2 dataset (13 TeV,138 fb⁻¹)

ttH allows to study directly the Yukawa coupling

- $y_t \sim 1$
- BSM physics could introduce modified couplings, in particular CP-violating coupling


Will summarize the studies from <u>EPJC 81, 378 (2021)</u> and <u>arXiv:2208.02686</u> (accepted by JHEP)



ttW production is one of the main background for ttH, tttt ...

- Measured $\sigma(t\bar{t}W)$ consistently above theory value (both in ATLAS and CMS)
- Active discussion about the modelling of this background

Will summarized the studies from arXiv:2208.06485 (accepted by JHEP)

Strategy

Using multilepton final states, categorize events depending on the lepton multiplicity

- For ttH analysis, 12 categories (focusing on the 3 most sensitive)
- For $t\bar{t}W$ analysis, 2 categories (2 same-sign (ss) leptons (ℓ) and 3ℓ)

Dedicated MVA to select isolated leptons from H, W and τ decays is crucial in this analysis. \rightarrow Reduce one of the main backgrounds

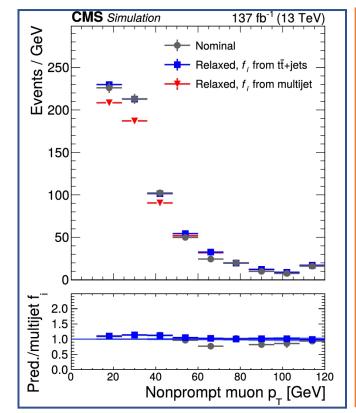
Dedicated **selection on each category**. Using Jet and b-tagging multiplicities and vetoing opposite charge leptons within Z peak

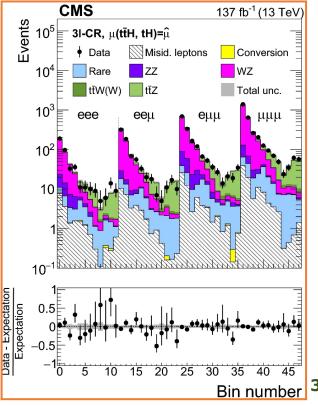
Backgrounds:

Reducible backgrounds:

Non prompt leptons

Electron charge flips


Photon Conversions

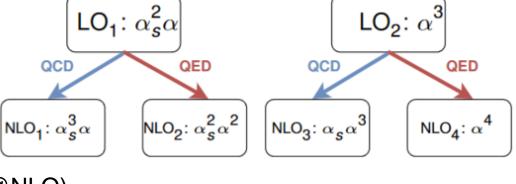

Estimated with data-driven techniques

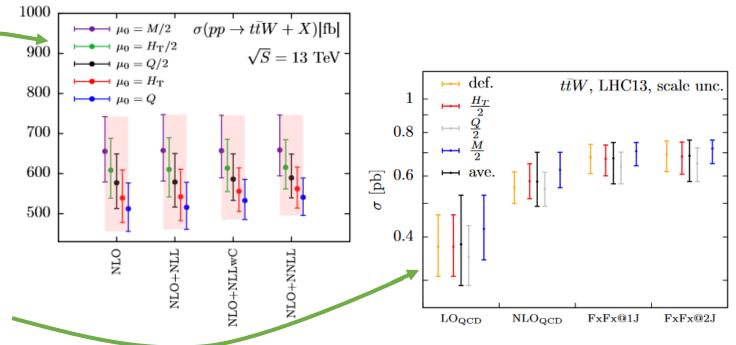
<u>Irreducible backgrounds:</u>

- > ttZ, ttW (for ttH analysis)
- > Dibosons

Control regions to constrain these backgrounds

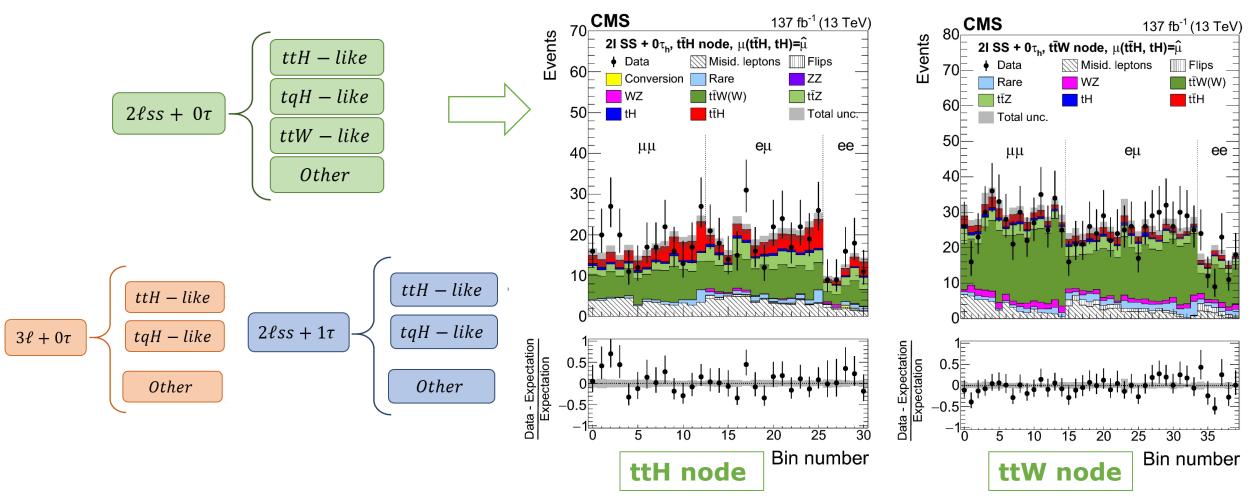
ttW MC

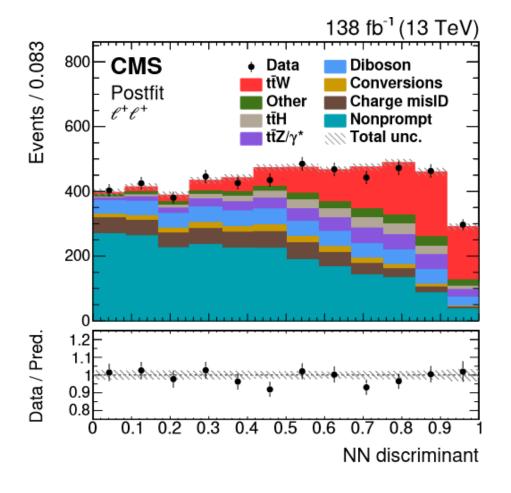

Hand book of LHC cross sections (Yellow Report 4):

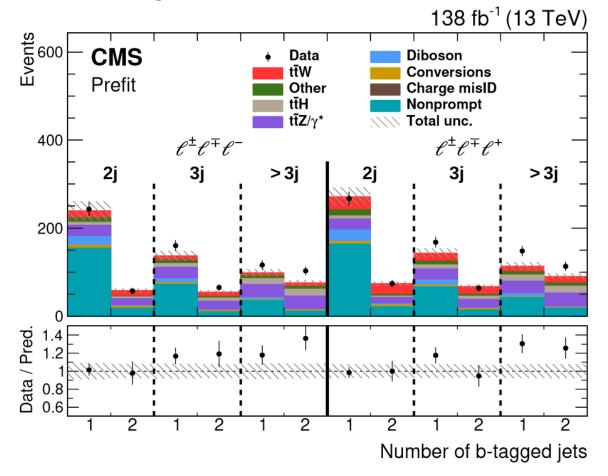

- tt̄W @ NLO QCD
- NLO EWK term $\alpha_s \alpha^3$ considered negligible \rightarrow in fact found to be $\sim \! 10\%$

The MC used in both studies presented in this talk include these EWK corrections:

MG5 aMC@NLO 2.6.0+Pythia8 FxFx NLO QCD + $\alpha_s \alpha^3$ EW (+0,1j@NLO)

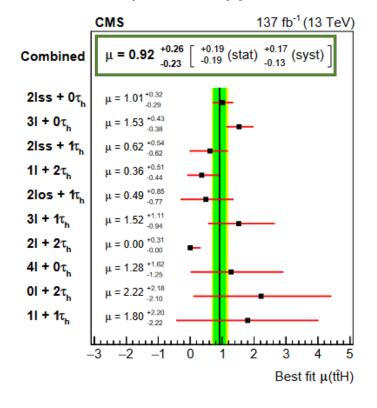

- tt̄W shows large scale dependence even after including NLO+NNLL (different from tt̄H) → new structures at NLO [arXiv:2001.03031]
- NEW FxFx merging procedure [JHEP 11 (2021) 29]:
 - Treats QCD and EW jets separately
 - Stabilization of scale dependence

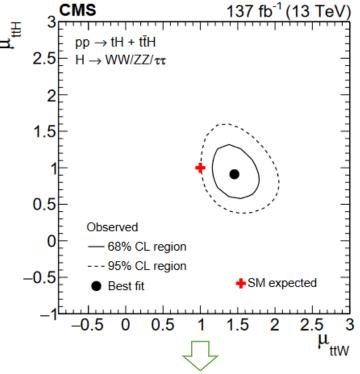

ttH event classification


- Dedicated NN in each of the 12 signal categories in order to discriminate signal from background
- Dedicated **node to target** $t\bar{t}W$ in $2\ell ss + 0\tau$ category
- Further classification depending on flavor, b-tag multiplicity...

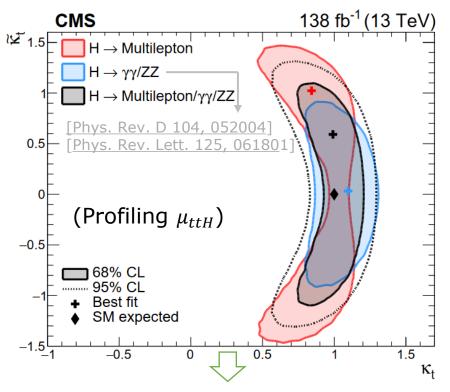
ttW event classification

- 2ℓss: a NN is used to distinguish signal from background
 - Further classification depending on flavor and charge of the leptons
- 3ℓ : Events categorized using charge of the leptons, jet and b-tag multiplicities.
 - Invariant mass of the 3ℓ is used as discriminating variable

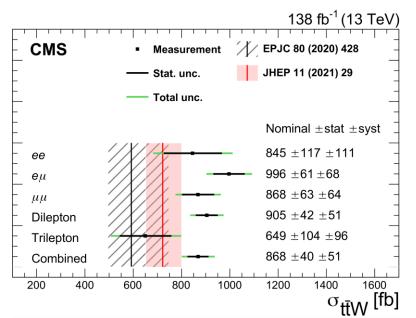


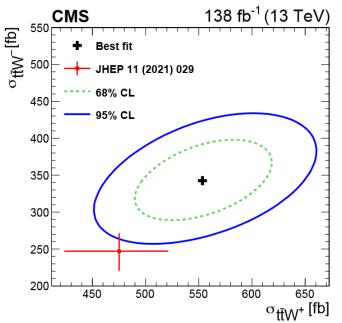


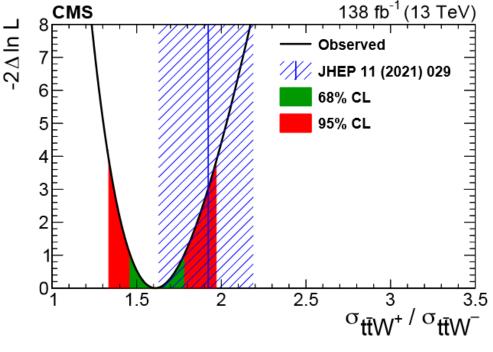
ttH result


Simultaneous maximum likelihood fit in the signal region categories as well as the control regions

- $t\bar{t}W$ and $t\bar{t}Z$ signal strengths (μ) freely floated in the fit
- CP interpretation: using kinematic differences between ttH CP-even and CP-odd components
 - dedicated BDT in each of the 3 most sensitive ttH enriched categories
 - Yields parametrized using: κ_t and $\widetilde{\kappa_t}$ (ratio of the CP-even and CP-odd terms to SM expectation, respectively)

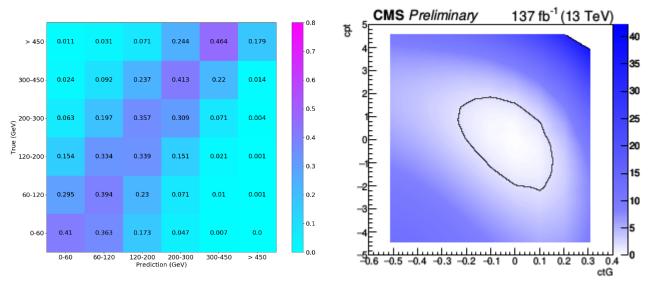



Exclude pure CP-odd with 3.7σ


ttW Results

Simultaneous maximum likelihood fit performed using signal regions as well as control regions

- tt̄Z normalization is freely floated in the fit
- $\sigma_{t\bar{t}W} = 868 \pm 40 \pm 51$ fb (reducing syst. unc. by a factor >2 wrt. previous CMS measurement)
- $\mu(t\bar{t}W) = 1.47 \pm 0.11$
- Compatible with <u>EPJC 81, 378 (2021)</u> and <u>ATLAS-CONF-2023-019</u>
- Also perform a simultaneous extraction of ttW and ttW
- The ratio is found to be $1.61 \pm 0.15 (stat)^{+0.07}_{-0.05} (syst)$



Prospects

Aim to perform differential measurements using full Run 2 dataset

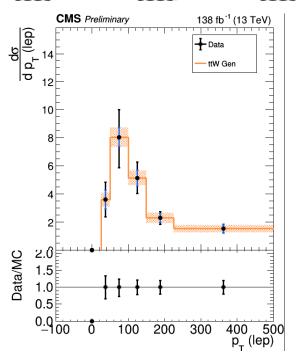
Work in progress

ttH

Study differentially: p_T^H , m_{ttH} and η_H

- NN used to regress the p_T (several strategies tried)
- Use maximum likelihood fit unfolding

Plan to include EFT interpretation:


ctp, cpt, ctG

Study several observables, useful to provide feedback to theorist

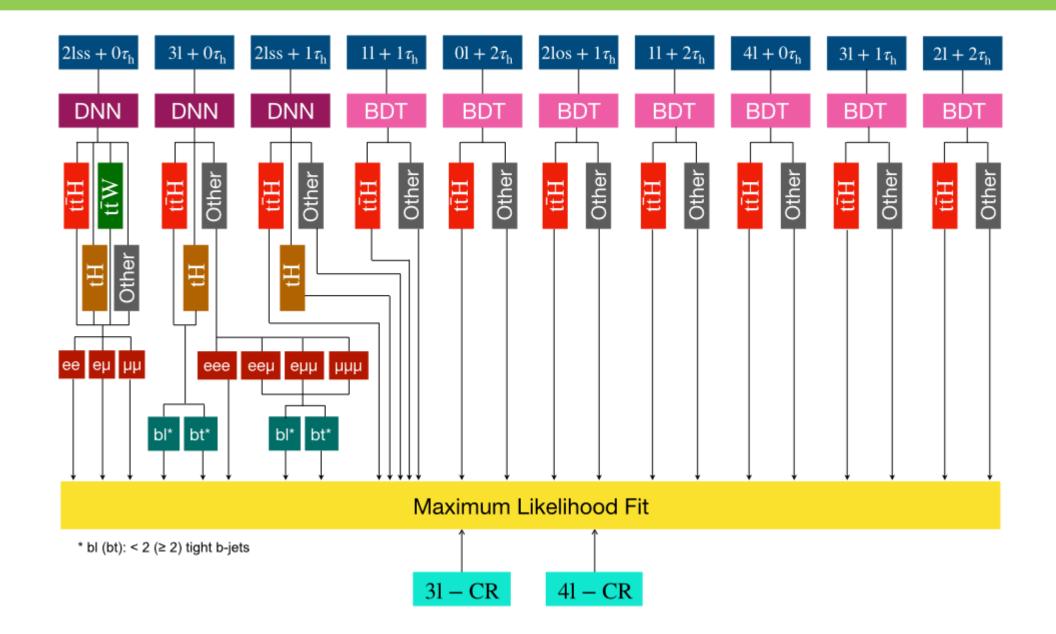
 Use maximum likelihood fit unfolding ttW can be used to measure tt asymmetry Will use updated state-of-the-art MC including new FxFx merging [JHEP 11 (2021) 29]

Summary

- Run 2 allowed to measure low cross section processes with high precision:
 - Unprecedent amount of data
 - Improvement on nonprompt background rejection
 - Better control of systematic uncertainties
- ttH process allowed to study the top-Higgs interaction, results are in good agreement with the SM
 - More extensive BSM interpretation can be performed in terms of EFT
- ttW cross section observed to be above predictions → need to improve modelling of this process
- Amount of data available also allows to perform differential measurements of both ttH and ttW processes → coming soon!

Back-up

Strategy


- Data taken by the CMS experiment at 13 TeV during Run 2 (138 fb⁻¹).
- Using multilepton final states, categorize events depending on the lepton multiplicity
 - For ttH analysis 12 categories (focusing on the 3 most sensitive)
- Select isolated muons from H, W and tau decays is crucial in this analysis
 - Use a dedicated MVA to distinguish those leptons form nonpromt leptons -> reduce one of the main backgrounds
- Dedicated selection on each category:

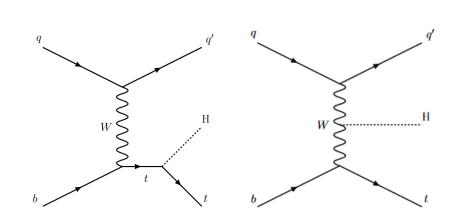
ttH			ttW		
	2lss+0tau	2lss +1 tau	31	2lss+0tau	31
nJets	≥	2	≥ 3		≥ 2
nbtag	≥ 1 medium b-tagged Jet or ≥ 2 loose b-tagged Jet				
MET	> 30	GeV	>30 * > 45 GeV **	>30 GeV	-
$\sum q_l^i$			±1	±1	±1
	Veto os leptons within Z peak (10 GeV mass window)			ndow)	

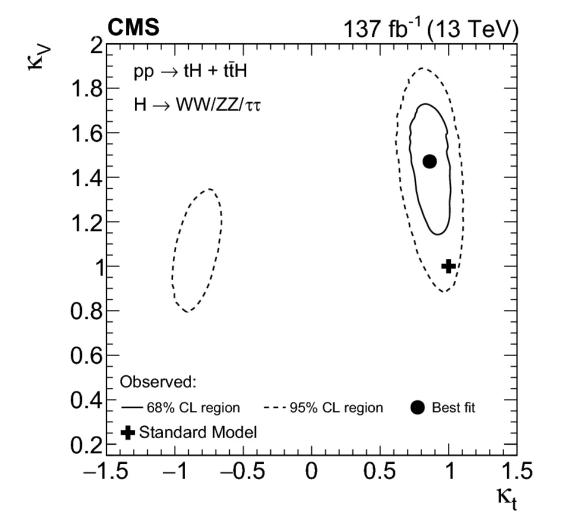
* If NJet \leq 3 and 1 SFOS

* NJet ≤ 3 and 0 SFOS

ttH categories

ttH syst

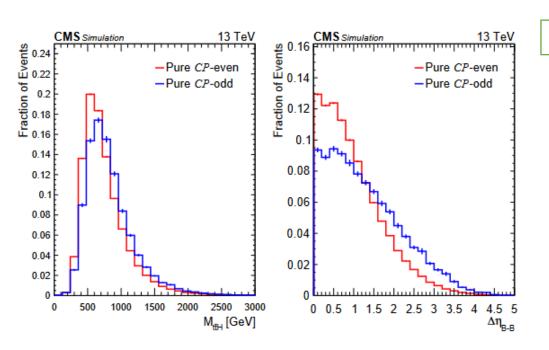

Source	$\Delta\mu_{\rm t\bar{t}H}/\mu_{\rm t\bar{t}H}[\%]$	$\Delta\mu_{\rm tH}/\mu_{\rm tH} [\%]$	$\Delta\mu_{\rm t\bar{t}W}/\mu_{\rm t\bar{t}W} [\%]$	$\Delta\mu_{t\bar{t}Z}/\mu_{t\bar{t}Z}[\%]$
Trigger efficiency	2.3	8.1	1.2	1.9
e, μ reconstruction and identification efficiency	2.9	7.1	1.7	3.2
$ au_{ m h}$ identification efficiency	4.6	9.1	1.7	1.3
b tagging efficiency and mistag rate	3.6	13.6	1.3	2.9
Misidentified leptons and flips	6.0	36.8	2.6	1.4
Jet energy scale and resolution	3.4	8.3	1.1	1.2
MC sample and sideband statistical uncertainty	7.1	27.2	2.4	2.3
Theory-related sources affecting acceptance	4.6	18.2	2.0	4.2
and shape of distributions	4.0	10.2	2.0	4.2
Normalization of MC-estimated processes	13.3	12.3	13.9	11.3
Integrated luminosity	2.2	4.6	1.8	3.1
Statistical uncertainty	20.9	48.0	5.9	5.8

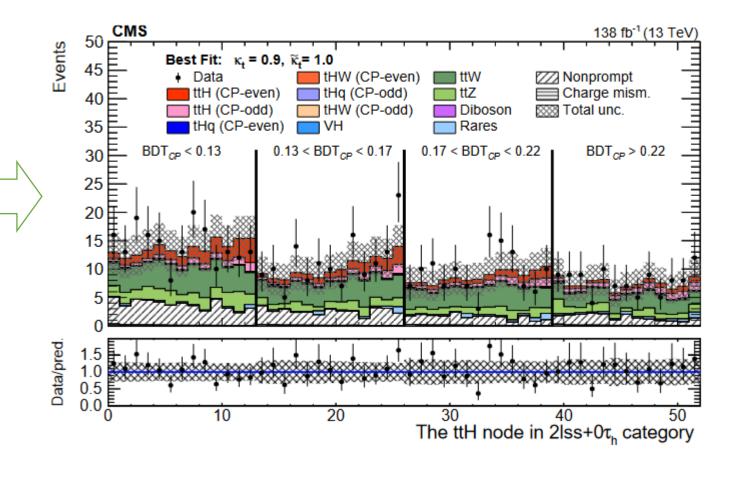

ttW syst

Source	Uncertainty [%]		
Experimental uncertainties			
Integrated luminosity	1.9		
b tagging efficiency	1.6		
Trigger efficiency	1.2		
Pileup reweighting	1.0		
L1 inefficiency	0.7		
Jet energy scale	0.6	Madalia a consentativativa	
Jet energy resolution	0.4	Modeling uncertainties	
Lepton selection efficiency	0.4	ttW scale	1.8
•		tīW color reconnection	1.0
Background uncertainties		ISR & FSR scale for ttW	0.8
ttH normalization	2.6	$t\bar{t}\gamma$ scale	0.4
Charge misidentification	1.6	VVV scale	0.3
Nonprompt leptons	1.3	tīH scale	0.2
VVV normalization	1.2	Conversions	0.2
ttVV normalization	1.2	Conversions	0.2
Conversions normalization	0.7	Simulation statistical uncertainty	1.8
$t\bar{t}\gamma$ normalization	0.6	Total systematic uncertainty	5.8
ZZ normalization	0.6		
Other normalizations	0.5		
tīZ normalization	0.3		
WZ normalization	0.2		
tZq normalization	0.2		
tHq normalization	0.2		

Htt coupling

- $\kappa_t = y_t / y_t^{SM}$ in good agreement with SM
- tH sensitive to the relative sign of kv kt
 - BSM yt =-1 \rightarrow constructive interference \rightarrow σ_{tH} \sim 0.8 pb (10 times greater than in the SM)



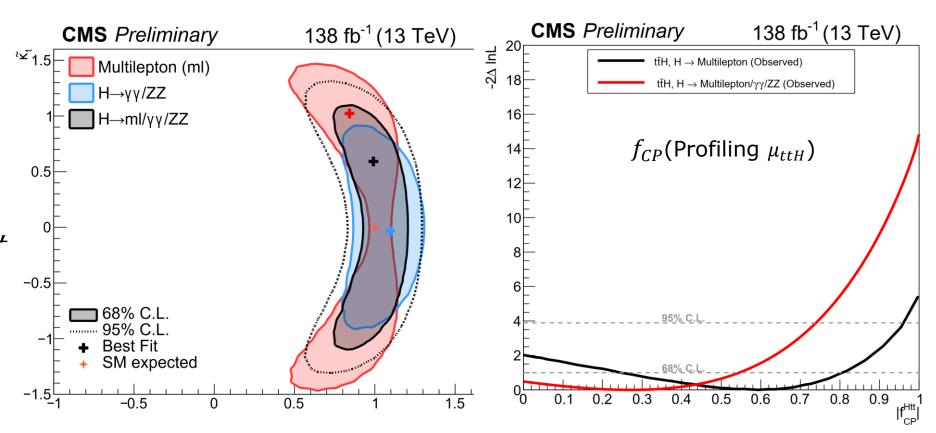


CP interpretation

Kinematic differences between ttH CP-even and CP-odd components are exploited \rightarrow dedicated BDT in each of the 3 most sensitive ttH enriched categories

Inputs: momentum of leptons and jets, angular variables, mases, object multiplicities and a specific tagger targeting hadronic top quark decays.

CP interpretation


Yields are parametrized using:

• κ_t and $\widetilde{\kappa_t}$ (ratio of the CP-even and CP-odd terms to SM expectation, respectively)

$$f_{CP} = \frac{|\tilde{\kappa}_t|^2}{|\tilde{\kappa}_t|^2 + |\kappa_t|^2}$$

The result is combined with already published ttH measurements:

- ZZ, <u>Phys. Rev. D 104</u>, 052004
- γγ, Phys. Rev. Lett.
 125, 061801

ttH diff/EFT

Neural Network for p_T^H regression input variables:

Input	Number of Variables	Which Channels
$l_1(p_{\mathrm{T}}, \eta, \phi)$	3	2ℓss & 3ℓ
$l_2(p_{\mathrm{T}}, \eta, \phi)$	3	$2\ell ss \& 3\ell$
$l_3(p_{\mathrm{T}},\eta,\phi)$	3	3ℓ
$t_{had}(p_{\mathrm{T}},\eta,\phi)$	3	$2\ell ss \& 3\ell$
t_{had} BDT Score	1	2ℓss & 3ℓ
E_T^{miss}	1	$2\ell ss \& 3\ell$
$\phi_{E_T^{miss}}$	1	$2\ell ss \& 3\ell$
$\sum_{n=1}^{5} j_n(p_{\mathrm{T}}, \eta, \phi)$	3	$2\ell ss \& 3\ell$
$\sum_{n>5} j_n(p_{\mathrm{T}}, \eta, \phi)$	3	$2\ell ss \& 3\ell$
$\sum_{n} j_{n} + \sum_{n} l_{n}(p_{\mathrm{T}}, \eta, \phi)$	3	$2\ell ss \& 3\ell$
Total	21	-

Table 19: Input variables to DNN used for p_T regression.

Neural Network for p_T^H regression input variables:

Name	Operator	Comments
ctp	$\overline{q}_i u_j \tilde{\phi} (\phi^{\dagger} \phi)$	Effects on tHq
cpt	$\left(\phi^{\dagger} \stackrel{\longleftrightarrow}{iD}_{\mu} \phi\right) \left(\overline{\mathbf{u}}_{i} \gamma^{\mu} \mathbf{u}_{j}\right)$	Effects on $t\bar{t}H$, $t\bar{t}W$, $t\bar{t}Z$, and tZq
cptb	$\left(\tilde{\phi}^{\dagger}iD_{\mu}\phi\right)\left(\overline{\mathbf{u}}_{i}\gamma^{\mu}\mathbf{d}_{j}\right)$	Effects on tHqand tZq
ctG	$\left(\overline{\mathbf{q}}_{i}\sigma^{\mu\nu}T^{A}\mathbf{u}_{j}\right)\widetilde{\phi}G_{\mu\nu}^{A}$	Effects on every process with a top quark
cpG	$\left(\phi^{\dagger}\phi\right)G_{\mu\nu}^{A}G^{A\mu\nu}$	Effects on every QCD process

ttW diff/EFT

We are exploring several observables

- Number of jets
- HT (scalar sum of jet pt)
- Number of b-jets
- Leading b-jet pt
- Leading lepton pt
- Minimum ΔR (leading lepton, jet)
- ΔR(leptons)
- Maximum | η(lepton) |
- Leading lepton pt and eta
- Leading jet pt
- Leading b-jet pt
- Number of jets
- Δη(II)