# ABOUT THE 95 GEV EXCESSES IN THE UN2HDM

### João Seabra

Instituto de Física Teórica UAM-CSIC, Campus de Cantoblanco, Madrid CFTP, Instituto Superior Técnico, Lisboa





### 7th Red LHC Workshop

11th of May 2023

Ongoing work done in collaboration with: **Juan A. Aguilar Saavedra**, **Henrique B. Câmara** and **Filipe R. Joaquim** 









### **MOTIVATION**

- Several theoretical frameworks beyond the Standard Model (SM) feature extended Higgs sectors;
- A recent CMS result based on the full Run 2 dataset unconfirmed an excess of diphoton events reducing the local significance to 2.9σ at a mass around 95 GeV.

### Signal strength:

$$\mu_{\gamma\gamma} = \frac{\sigma(pp \to H \to \gamma\gamma)}{\sigma(pp \to H \to \gamma\gamma)_{\rm SM}} = 0.33^{+0.19}_{-0.12}$$

This is **not** the only hint for a 95 GeV Higgs boson!



CMS Collaboration; CMS-PAS-HIG-20-002

## **MOTIVATION**



[LEP Working Group for Higgs boon searches]; Phys. Lett. B 565 (2003) 61

• An excess of  $H \to b \overline{b}$  events with 2.3 $\sigma$  local significance was found in LEP;

$$\mu_{bb} = 0.117 \pm 0.057$$



[CMS Collaboration]; CMS-PAS-HIG-21-001

• Another excess of 3.1 $\sigma$  was discovered by CMS in the channel  $H \to \tau^- \tau^+$ .

$$\mu_{\tau\tau} = 1.2 \pm 0.5$$

# YUKAWA TYPES IN TWO HIGGS DOUBLET MODELS

**Type-I:** Same Higgs doublet couples to all fermions

$$\mathcal{L}_Y = -y_u \overline{q}_L \widetilde{\Phi}_2 u_R - y_d \overline{q}_L \Phi_2 d_R - y_e \overline{\ell}_L \Phi_2 e_R + \text{h.c.}$$

**Type-II:** One Higgs doublet couples to down-type quarks and leptons while the other couples to up-type quarks

$$\mathcal{L}_Y = -y_u \overline{q}_L \widetilde{\Phi}_2 u_R - y_d \overline{q}_L \Phi_1 d_R - y_e \overline{\ell}_L \Phi_1 e_R + \text{h.c.}$$

Type-III/Lepton specific: One Higgs doublet couples to quarks the other to leptons

$$\mathcal{L}_Y = -y_u \overline{q}_L \widetilde{\Phi}_1 u_R - y_d \overline{q}_L \Phi_1 d_R - y_e \overline{\ell}_L \Phi_2 e_R + \text{h.c.}$$

**Type-IV/Flipped :** One Higgs doublet couples to up-type quarks and leptons while the other couples to down-type quarks

$$\mathcal{L}_Y = -y_u \overline{q}_L \widetilde{\Phi}_1 u_R - y_d \overline{q}_L \Phi_2 d_R - y_e \overline{\ell}_L \Phi_1 e_R + \text{h.c.}$$

# N2HDM / S2HDM

 Extensions of the SM Higgs sector with a doublet and a real (N2HDM) or complex (S2HDM) singlet;

# N2HDM / S2HDM

- Extensions of the SM Higgs sector with a doublet and a real (N2HDM) or complex (S2HDM) singlet;
- When considering a Type-IV, these theories can explain the three observed excesses at a mass close to 95 GeV (Type-II has been also explored, but with less success).



T. Biekötter, S. Heinemeyer and G. Weiglein; arXiv [hep-ph]: 2303.12018

# N2HDM / S2HDM

- Extensions of the SM Higgs sector with a doublet and a real (N2HDM) or complex (S2HDM) singlet;
- When considering a Type-IV, these theories can explain the three observed excesses at a mass close to 95 GeV (Type-II has been also explored, but with less success).



T. Biekötter, S. Heinemeyer and G. Weiglein; arXiv [hep-ph]: 2303.12018

### **OPEN QUESTIONS**

- The diphoton excess is diminishing ...
   It may well disappear ...
- Can we account for the bb and  $\tau\tau$  excesses in such case?
- Can we account for an excess in just one channel?

• ...

### WHAT ABOUT THE UN2HDM?

 Its scalar sector has the same structure as the S2HDM but extends the Standard Model (SM) gauge symmetry with an additional U(1) group:

$$\mathrm{SU}(3)_c \otimes \mathrm{SU}(2)_L \otimes \mathrm{U}(1)_Y \otimes \mathrm{U}(1)'_{Y'} \longrightarrow$$

New massive gauge boson

Z'

### WHAT ABOUT THE UN2HDM?

 Its scalar sector has the same structure as the S2HDM but extends the Standard Model (SM) gauge symmetry with an additional U(1) group:

$$\mathrm{SU(3)}_c \otimes \mathrm{SU(2)}_L \otimes \mathrm{U(1)}_Y \otimes \mathrm{U(1)'}_{Y'} \longrightarrow \begin{array}{c} \text{New massive gauge boson} \\ Z' \end{array}$$

Recently proposed, in the context of multiboson production from cascade

decays of a 2 TeV Z' boson:

### Example:





J. A. Aguilar Saavedra, F. R. Joaquim and J. F. Seabra; Eur. Phys. J. C 82 (2022) 11, 1080

# WHAT ABOUT THE UN2HDM?

 Its scalar sector has the same structure as the S2HDM but extends the Standard Model (SM) gauge symmetry with an additional U(1) group:

$$\mathrm{SU(3)}_c \otimes \mathrm{SU(2)}_L \otimes \mathrm{U(1)}_Y \otimes \mathrm{U(1)'}_{Y'} \longrightarrow \begin{array}{c} \text{New massive gauge boson} \\ Z' \end{array}$$

Recently proposed, in the context of multiboson production from cascade

decays of a 2 TeV Z' boson:

### Example:





J. A. Aguilar Saavedra, F. R. Joaquim and J. F. Seabra; Eur. Phys. J. C 82 (2022) 11, 1080

### Can it also accommodate the 95 GeV Higgs boson?

| SM fermions  | Y    | Y'         |
|--------------|------|------------|
| $(u d)_L$    | 1/6  | <b>≠</b> 0 |
| $u_R$        | 2/3  | <b>≠</b> 0 |
| $d_R$        | -1/3 | <b>≠</b> 0 |
| $( u \ l)_L$ | -1/2 | 0          |
| $l_R$        | -1   | 0          |

| Scalars  | Y   | Y'         |
|----------|-----|------------|
| $\Phi_1$ | 1/2 | <b>≠</b> 0 |
| $\Phi_2$ | 1/2 | 0          |
| $\chi$   | 0   | <b>≠</b> 0 |

# More about the UN2HDM

| SM fermions  | Y    | Y'         |
|--------------|------|------------|
| $(u \ d)_L$  | 1/6  | <b>≠</b> 0 |
| $u_R$        | 2/3  | <b>≠</b> 0 |
| $d_R$        | -1/3 | <b>≠</b> 0 |
| $( u \ l)_L$ | -1/2 | 0          |
| $l_R$        | -1   | 0          |

The neutral and colour-singlet Z
boson should be leptophobic;

| Scalars  | Y   | Y'         |
|----------|-----|------------|
| $\Phi_1$ | 1/2 | <b>≠</b> 0 |
| $\Phi_2$ | 1/2 | 0          |
| $\chi$   | 0   | <b>≠</b> 0 |

| SM fermions  | ig  Y | Y'         |
|--------------|-------|------------|
| $(u d)_L$    | 1/6   | <b>≠</b> 0 |
| $u_R$        | 2/3   | <b>≠</b> 0 |
| $d_R$        | -1/3  | <b>≠</b> 0 |
| $( u \ l)_L$ | -1/2  | 0          |
| $l_R$        | -1    | 0          |

ScalarsYY' $\Phi_1$ 1/2 $\neq 0$  $\Phi_2$ 1/20 $\chi$ 0 $\neq 0$ 

- The neutral and colour-singlet Z
  boson should be leptophobic;
- SM quarks get U(1)' hypercharge, meaning that extra matter is required for cancelling anomalies.

| SM fermions  | ig  Y | Y'         |
|--------------|-------|------------|
| $(u d)_L$    | 1/6   | <b>≠</b> 0 |
| $u_R$        | 2/3   | <b>≠</b> 0 |
| $d_R$        | -1/3  | <b>≠</b> 0 |
| $( u \ l)_L$ | -1/2  | 0          |
| $l_R$        | -1    | 0          |

| Scalars  | Y   | Y'         |
|----------|-----|------------|
| $\Phi_1$ | 1/2 | <b>≠</b> 0 |
| $\Phi_2$ | 1/2 | 0          |
| $\chi$   | 0   | <b>≠</b> 0 |

- The neutral and colour-singlet Z
  boson should be leptophobic;
- SM quarks get U(1)' hypercharge, meaning that extra matter is required for cancelling anomalies.



We choose to add vectorlike leptons (VLLs)

| SM fermions  | Y    | Y'         |
|--------------|------|------------|
| $(u d)_L$    | 1/6  | <b>≠</b> 0 |
| $u_R$        | 2/3  | <b>≠</b> 0 |
| $d_R$        | -1/3 | <b>≠</b> 0 |
| $( u \ l)_L$ | -1/2 | 0          |
| $l_R$        | -1   | 0          |

| Scalars  | Y   | Y'         |
|----------|-----|------------|
| $\Phi_1$ | 1/2 | <b>≠</b> 0 |
| $\Phi_2$ | 1/2 | 0          |
| $\chi$   | 0   | <b>≠</b> 0 |

- The neutral and colour-singlet Z
  boson should be leptophobic;
- SM quarks get U(1)' hypercharge, meaning that extra matter is required for cancelling anomalies.



# We choose to add vectorlike leptons (VLLs)

• Dark matter candidate, if the lightest VLL is neutral;

| SM fermions  | ig  $Y$ | Y'         |
|--------------|---------|------------|
| $(u d)_L$    | 1/6     | <b>≠</b> 0 |
| $u_R$        | 2/3     | <b>≠</b> 0 |
| $d_R$        | -1/3    | <b>≠</b> 0 |
| $( u \ l)_L$ | -1/2    | 0          |
| $l_R$        | -1      | 0          |

| • | The neutral and colour-singlet $Z$ |
|---|------------------------------------|
|   | boson should be leptophobic;       |

 SM quarks get U(1)' hypercharge, meaning that extra matter is required for cancelling anomalies.



| Scalars  | Y   | Y'         |
|----------|-----|------------|
| $\Phi_1$ | 1/2 | <b>≠</b> 0 |
| $\Phi_2$ | 1/2 | 0          |
| $\chi$   | 0   | <b>≠</b> 0 |

# We choose to add vectorlike leptons (VLLs)

• Dark matter candidate, if the lightest VLL is neutral;

Simplest scenarios to cancel anomalies are obtained when all quark fields couple to the same Higgs doublet.

| SM fermions  | Y    | Y'     |
|--------------|------|--------|
| $(u d)_L$    | 1/6  | $Y_q'$ |
| $u_R$        | 2/3  | $Y_q'$ |
| $d_R$        | -1/3 | $Y_q'$ |
| $( u \ l)_L$ | -1/2 | 0      |
| $l_R$        | -1   | 0      |

| VLLs               | Y    | Y'                   |
|--------------------|------|----------------------|
| $(N_1 E_1)_{R(L)}$ | -1/2 | $(-)9Y_q'/2$         |
| $N_{2L(R)}$        | 0    | $(-)9Y_q^\prime/2$   |
| $E_{2L(R)}$        | 1    | $(-)9Y_q^{\prime}/2$ |

| Scalars  | Y   | Y'      |
|----------|-----|---------|
| $\Phi_1$ | 1/2 | $9Y_q'$ |
| $\Phi_2$ | 1/2 | 0       |
| $\chi$   | 0   | $9Y_q'$ |

# Type-I Yukawa sector:

$$\mathcal{L}_Y = -y_u \overline{q}_L \tilde{\Phi}_2 u_R$$
$$-y_d \overline{q}_L \Phi_2 d_R$$
$$-y_e \overline{\ell}_L \Phi_2 e_R + \text{h.c.}$$

| SM fermions  | Y    | Y'      |
|--------------|------|---------|
| $(u d)_L$    | 1/6  | 0       |
| $u_R$        | 2/3  | $Y_q'$  |
| $d_R$        | -1/3 | $-Y_q'$ |
| $( u \ l)_L$ | -1/2 | 0       |
| $l_R$        | -1   | 0       |

| Vector-like leptons | Y  | Y'      |
|---------------------|----|---------|
| $N_{iL}$            | 0  | 0       |
| $N_{iR}$            | 0  | $Y_q'$  |
| $E_{iL}$            | -1 | 0       |
| $E_{iR}$            | -1 | $-Y_q'$ |
| i = 1, 2, 3         | -  |         |

| Scalars  | Y   | Y'     |
|----------|-----|--------|
| $\Phi_1$ | 1/2 | $Y_q'$ |
| $\Phi_2$ | 1/2 | 0      |
| $\chi$   | 0   | $Y_q'$ |

# Type-III/Lepton specific Yukawa sector:

$$\mathcal{L}_Y = -y_u \overline{q}_L \tilde{\Phi}_1 u_R$$
$$-y_d \overline{q}_L \Phi_1 d_R$$
$$-y_e \overline{\ell}_L \Phi_2 e_R + \text{h.c.}$$

### **NEW HIGGS TO DIPHOTON CONTRIBUTIONS**

### **Charged Higgs**



Existing in models with two Higgs doublets e.g. 2HDM, N2HDM, S2HDM ...

# **NEW HIGGS TO DIPHOTON CONTRIBUTIONS**

### **Charged Higgs**

# $H_{i} \longrightarrow H^{\pm} \longrightarrow H^{\pm} \longrightarrow H^{\pm} \longrightarrow \gamma$

Existing in models with two Higgs doublets e.g. 2HDM, N2HDM, S2HDM ...

### **Vector-like leptons**



### Specific to the UN2HDM

VLLs are introduced for gauge anomaly cancellation

# NUMERICAL PROCEDURE

### Scalar masses

| $m_{H_1}$           | 95.4 GeV         |
|---------------------|------------------|
| $m_h$               | 125.09 GeV       |
| $m_{H_2}$           | [125.1,1000] GeV |
| $m_{A^0},m_{H^\pm}$ | [20,1000] GeV    |

### **VEV** parameter

| $\tan \beta$ | [0, | 20 |
|--------------|-----|----|
| o colling    | ĮO, | 20 |

### **Effective couplings of SM Higgs boson**

$$c(hVV)^2$$
 [0.9, 1.0]  $c(ht\bar{t})^2$  [0.8, 1.2]

### **CP-even scalars mixing matrix**

$$\operatorname{sign}(O_{31})$$
 {-1,1}  $O_{32}$  [-1,1]

### U(1) parameters

$$m_{Z'}$$
 2.2 TeV  $g_{Z'}Y_\chi'$  0.9  $upprox 2.2 \ {
m TeV}\,, \ an heta_Z < 10^{-3}\,.$ 

- The constraints taken into account by ScannerS are:
  - Theoretical constraints imposed by perturbative unitarity, boundedness from below and vacuum stability conditions (EVADE);
  - Electroweak precision constraints;
  - Flavour constraints;
  - Higgs searches/measurements (HiggsTools).
- The VLLs are decoupled and are not considered in our preliminary analysis for which we will show our first results.

### PRELIMINARY RESULTS: DIPHOTON-DIBOTTOM



 It is hard to simultaneously account for diphoton and dibottom excesses without VLLs;

### PRELIMINARY RESULTS: DIPHOTON-DITAU



- Type-III accomodates the ditau excess at 1σ level and an eventual disappearance of the diphoton excess;
- Neither Type-I nor Type-III can explain the (reduced) diphoton and ditau excesses simultaneously (VLLs could help explaining a larger diphoton excess)

# PRELIMINARY RESULTS: DITAU-DIBOTTOM



- Type-I fails to explain the ditau excess due to neutral Higgs coupling to charged leptons and down-quarks being the same (linear relation)
- Type-III accomodates both ditau and dibottom excesses but only at 2σ level

• We investigate the possibility of explaining excesses in only one or two channels among bb,  $\tau\tau$ ,  $\gamma\gamma$ ;

- We investigate the possibility of explaining excesses in only one or two channels among bb,  $\tau\tau$ ,  $\gamma\gamma$ ;
- This is complementary to explaining excesses in the three of them simultaneously;

- We investigate the possibility of explaining excesses in only one or two channels among bb, ττ , γγ;
- This is complementary to explaining excesses in the three of them simultaneously;
- Type-I model accomodates the diphoton CMS and the dibottom LEP excesses for a 95 GeV Higgs;

- We investigate the possibility of explaining excesses in only one or two channels among bb,  $\tau\tau$ ,  $\gamma\gamma$ ;
- This is complementary to explaining excesses in the three of them simultaneously;
- Type-I model accomodates the diphoton CMS and the dibottom LEP excesses for a 95 GeV Higgs;
- Type-III/Lepton specific model accommodates the ditau CMS excess for a 95 GeV Higgs and nothing else;

- We investigate the possibility of explaining excesses in only one or two channels among bb,  $\tau\tau$ ,  $\gamma\gamma$ ;
- This is complementary to explaining excesses in the three of them simultaneously;
- Type-I model accomodates the diphoton CMS and the dibottom LEP excesses for a 95 GeV Higgs;
- Type-III/Lepton specific model accommodates the ditau CMS excess for a 95 GeV Higgs and nothing else;
- These preliminary results only take into account the charged Higgs contribution to the diphoton decay rate;

- We investigate the possibility of explaining excesses in only one or two channels among bb,  $\tau\tau$ ,  $\gamma\gamma$ ;
- This is complementary to explaining excesses in the three of them simultaneously;
- Type-I model accomodates the diphoton CMS and the dibottom LEP excesses for a 95 GeV Higgs;
- Type-III/Lepton specific model accommodates the ditau CMS excess for a 95 GeV Higgs and nothing else;
- These preliminary results only take into account the charged Higgs contribution to the diphoton decay rate;
- Next step: include vector-like leptons in our analysis to explain the diphoton CMS excess for a 95 GeV Higgs boson.

- We investigate the possibility of explaining excesses in only one or two channels among bb,  $\tau\tau$ ,  $\gamma\gamma$ ;
- This is complementary to explaining excesses in the three of them simultaneously;
- Type-I model accomodates the diphoton CMS and the dibottom LEP excesses for a 95 GeV Higgs;
- Type-III/Lepton specific model accommodates the ditau CMS excess for a 95 GeV Higgs and nothing else;
- These preliminary results only take into account the charged Higgs contribution to the diphoton decay rate;
- Next step: include vector-like leptons in our analysis to explain the diphoton CMS excess for a 95 GeV Higgs boson.

# Thank you!



### SCALAR POTENTIAL

$$\begin{split} V(\Phi_{1},\Phi_{2},\chi) &= m_{11}^{2}\Phi_{1}^{\dagger}\Phi_{1} + m_{22}^{2}\Phi_{2}^{\dagger}\Phi_{2} + \frac{m_{0}^{2}}{2}\chi^{\dagger}\chi \\ &+ \frac{\lambda_{1}}{2}(\Phi_{1}^{\dagger}\Phi_{1})^{2} + \frac{\lambda_{2}}{2}(\Phi_{2}^{\dagger}\Phi_{2})^{2} + \lambda_{3}(\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{2}^{\dagger}\Phi_{2}) + \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2})(\Phi_{2}^{\dagger}\Phi_{1}) \\ &+ \frac{\lambda_{5}}{2}(\chi^{\dagger}\chi)^{2} + \frac{\lambda_{6}}{2}(\Phi_{1}^{\dagger}\Phi_{1})(\chi^{\dagger}\chi) + \frac{\lambda_{7}}{2}(\Phi_{2}^{\dagger}\Phi_{2})(\chi^{\dagger}\chi) + [\mu\chi\Phi_{1}^{\dagger}\Phi_{2} + \text{h.c.}] \end{split}$$

### Scalar fields

$$\Phi_1 = \begin{pmatrix} \phi_1^+ \\ \frac{1}{\sqrt{2}}(v_1 + \rho_1 + i\eta_1) \end{pmatrix} , \quad \Phi_2 = \begin{pmatrix} \phi_2^+ \\ \frac{1}{\sqrt{2}}(v_2 + \rho_2 + i\eta_2) \end{pmatrix} , \quad \chi = \frac{1}{\sqrt{2}}(u + \rho_3 + i\eta_3).$$

$$\langle \Phi_1 \rangle = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} v_1 \end{pmatrix} \quad , \quad \langle \Phi_2 \rangle = \begin{pmatrix} 0 \\ \frac{1}{\sqrt{2}} v_2 \end{pmatrix} \quad , \quad \langle \chi \rangle = \frac{1}{\sqrt{2}} u \, .$$

### Rephasing

$$\Phi_2' = e^{-i\varphi_2} \Phi_2 \\ \chi' = e^{-i\varphi_3} \chi \qquad \qquad V(\Phi_1, \Phi_2', \chi') = V(\Phi_1, \Phi_2, \chi) \quad \text{if} \quad \mu \to \mu' = e^{-i(\varphi_2 + \varphi_3)} \mu$$

All VEVs can be assumed as real without loss of generality.

### SCALAR POTENTIAL

$$\begin{split} V(\Phi_{1},\Phi_{2},\chi) &= m_{11}^{2}\Phi_{1}^{\dagger}\Phi_{1} + m_{22}^{2}\Phi_{2}^{\dagger}\Phi_{2} + \frac{m_{0}^{2}}{2}\chi^{\dagger}\chi \\ &+ \frac{\lambda_{1}}{2}(\Phi_{1}^{\dagger}\Phi_{1})^{2} + \frac{\lambda_{2}}{2}(\Phi_{2}^{\dagger}\Phi_{2})^{2} + \lambda_{3}(\Phi_{1}^{\dagger}\Phi_{1})(\Phi_{2}^{\dagger}\Phi_{2}) + \lambda_{4}(\Phi_{1}^{\dagger}\Phi_{2})(\Phi_{2}^{\dagger}\Phi_{1}) \\ &+ \frac{\lambda_{5}}{2}(\chi^{\dagger}\chi)^{2} + \frac{\lambda_{6}}{2}(\Phi_{1}^{\dagger}\Phi_{1})(\chi^{\dagger}\chi) + \frac{\lambda_{7}}{2}(\Phi_{2}^{\dagger}\Phi_{2})(\chi^{\dagger}\chi) + [\mu\chi\Phi_{1}^{\dagger}\Phi_{2} + \text{h.c.}] \end{split}$$

### Minimum conditions

$$0 = m_{11}^2 v_1 + \frac{1}{2} v_1^3 \lambda_1 + \frac{1}{2} v_1 v_2^2 (\lambda_3 + \lambda_4) + \frac{1}{4} u^2 v_1 \lambda_6 + \frac{1}{\sqrt{2}} u v_2 \operatorname{Re}(\mu)$$

$$0 = m_{22}^2 v_2 + \frac{1}{2} v_2^3 \lambda_2 + \frac{1}{2} v_1^2 v_2 (\lambda_3 + \lambda_4) + \frac{1}{4} u^2 v_2 \lambda_7 + \frac{1}{\sqrt{2}} u v_1 \operatorname{Re}(\mu)$$

$$0 = m_0^2 u + u^3 \lambda_5 + \frac{1}{2} u v_1^2 \lambda_6 + \frac{1}{2} u v_2^2 \lambda_7 + \sqrt{2} v_1 v_2 \operatorname{Re}(\mu)$$

$$0 = \operatorname{Im}(\mu),$$

The parameters  $\lambda_{1,\dots,7}$  and  $\mu$  can be written in terms of the five scalar masses and the three mixing angles of CP-even scalars.

#### Note:

Henceforth, the VEVs  $v_1$  and  $v_2$  are represented in terms of

$$v = \sqrt{v_1^2 + v_2^2}$$
,  $\tan \beta = \frac{v_2}{v_1}$ .

### PARAMETRISATION BASED ON EFFECTIVE COUPLINGS

$$O = \begin{pmatrix} c_1 c_2 & s_1 c_2 & s_2 \\ -(c_1 s_2 s_3 + s_1 c_3) & c_1 c_3 - s_1 s_2 s_3 & c_2 s_3 \\ -c_1 s_2 c_3 + s_1 s_3 & -(c_1 s_3 + s_1 s_2 c_3) & c_2 c_3 \end{pmatrix}^T$$

Input parameters for defining the parametrisation are in red:

$$c(ht\bar{t}) = \frac{O_{21}}{s_{\beta}} \Leftrightarrow O_{21} = c(ht\bar{t})s_{\beta}$$

$$c(hVV) = O_{11}c_{\beta} + O_{21}s_{\beta} \Leftrightarrow O_{11} = \frac{c(hVV) - O_{21}s_{\beta}}{c_{\beta}}, \quad (V = W, Z)$$

$$O_{11}^{2} + O_{21}^{2} + O_{31}^{2} = 1 \Leftrightarrow O_{31} = \pm\sqrt{1 - O_{11}^{2} - O_{21}^{2}}$$

$$\theta_1 = \arctan\left(\frac{O_{21}}{O_{11}}\right)$$
 ,  $\theta_2 = \arcsin(O_{31})$  ,  $\theta_3 = \arcsin\left(\frac{O_{32}}{c_2}\right)$