

Heavy-ion physics with LHCb detector

Samuel Belin on behalf of the LHCb-IFT-IGFAE group

Extreme states of nuclear matter

At high temperature and/or density, Quark Gluon Plasma formation.

Objectif of « heavy-ion physics »: Understand QCD and study the Quark Gluon Plasma (QGP)

Produce the QGP in the laboratory

Large Hadron Collider

τ~1 fm/c

formation

 $\tau \sim 10^{15} \text{ fm/c}$

Detect QGP?

$$R^{AA} = \frac{\sigma_{Jpsi}^{PbPb}}{T_{AA}\sigma_{J/\psi}^{pp}}$$

- * A classic method is to compare the production of a certain particle (J/ψ for example) in PbPb and scaled pp collisions.
 - * If $R^{AA} = 1$, no effect. PbPb is a superposition of independent pp collisions
 - * If $R^{AA} \neq 1$, additional effects
 - * This effects can come from the hot medium (plasma) of the cold medium (confined medium)

Complexity of a hadronic collision

Effects taken into account by the collision generator **PYTHIA**

- Important to study QCD in confined and unconfined medium (QGP)
- * proton-proton and proton-Plomb collisions -> confined QCD
- ♦ Plomb-Plomb collisions → QGP

LHCb is the ideal detector for confined QCD

The LHCb detector

Single arm spectrometer fully instrumented in pseudorapidity range $2 < \eta < 5$

The ultimate nPDF explorer

Excellent possibilities for nuclear physics with pPb and fixed target system

Different energy of the Pb and p beams: boost of nucleon-nucleon cms system $y=y_{lab}\pm0.465$

Series of Nuclear modification factor measurement to gives input to nPDFs fits Probes: charged particles, π^{\pm} , K^{\pm} , p, D^0 , D^{\pm} etc...

$$R_{pPb}^{Probe} = \frac{N_{pPb}^{Probe}}{A_{Pb}N_{pp}^{Probe}}$$

The ultimate nPDF explorer

Impact of the our results at 5TeV *LINK*

Nuclear modification factor of charged particle in pp, pPb @5TeV

$$\frac{d^2\sigma^{ch}(\eta, p_T)}{dp_T d\eta} = \frac{1}{L} \frac{N^{ch}(\eta, p_T)}{\Delta p_T \Delta \eta}$$

$$R_{pPb}(\eta, p_T) = \frac{1}{A} \frac{d^2 \sigma_{pPb}^{ch}(\eta, p_T) / dp_T d\eta}{d^2 \sigma_{pp}^{ch}(\eta, p_T) / dp_T d\eta}$$

- * Constrain nPDF down to x~10-6
- * Expected Cronin-like effects in backward and shadowing in forward region
- * Tension in the backward region suggesting additional effects, disagreement with CGC calculations in forward
- * Greater precision than models!

Nuclear modification factor of charged particle in pp, pPb @5TeV

$$Q_{exp}^2 = m^2 + p_T^2$$

$$x_{exp} = \frac{Q_{exp}}{\sqrt{s_{NN}}} e^{-r}$$

- * The group increased considerably, with 6 more PhD students!
 - * Nuclear modification factor of identified charged particles *pp*, pPb collisions @5TeV
 - * Mean-p_T of charged particle versus multiplicity in pp, pPb collisions @5TeV.
 - * Strangeness enhancement versus multiplicity in *p*Pb collisions @5TeV
 - * $J/\psi + \gamma$ production in pp collisions at 13 TeV
 - * $D_{s0}^*(2317)$ + production analysis versus multiplicity in pp collisions at 13 TeV With master students:
 - * Study low mass mesons with the dipion and and dimuon decay channel

- * The group increased considerably, with 6 more PhD students!
 - * Nuclear modification factor of identified charged particles *pp*, pPb collisions @5TeV
 - * Mean-p_T of charged particle versus multiplicity in pp, pPb collisions @5TeV.
 - * Strangeness enhancement versus multiplicity in pPb collisions @5TeV
 - * $J/\psi + \gamma$ production in pp collisions at 13 TeV
 - * $D_{s0}^*(2317)$ + production analysis versus multiplicity in pp collisions at 13 TeV
- * With master students:
 - * Study low mass mesons with the dipion and and dimuon decay channel

- * The group increased considerably, with 6 more PhD students!
 - * Nuclear modification factor of identified charged particles *pp*, pPb collisions @5TeV
 - * Mean-p_T of charged particle versus multiplicity in pp, pPb collisions @5TeV.
 - * Strangeness enhancement versus multiplicity in *p*Pb collisions @5TeV
 - * $J/\psi + \gamma$ production in pp collisions at 13 TeV

QGP in small system?

- * $D_{s0}^*(2317)$ + production analysis versus multiplicity in pp collisions at 13 TeV
- * With master students:
 - * Study low mass mesons with the dipion and and dimuon decay channel

- * The group increased considerably, with 6 more PhD students!
 - * Nuclear modification factor of identified charged particles *pp*, pPb collisions @5TeV
 - * Mean-p_T of charged particle versus multiplicity in pp, pPb collisions @5TeV.
 - * Strangeness enhancement versus multiplicity i
 - * $J/\psi + \gamma$ production in pp collisions at 13 TeV

Probing the proton PDF and better understand quarkonium hadronisation

- * $D_{s0}^*(2317)$ + production analysis versus multiplicity in pp comsions at 15 TeV
- * With master students:
 - * Study low mass mesons with the dipion and and dimuon decay channel

- * The group increased considerably, with 6 more PhD students!
 - * Nuclear modification factor of identified charged particles *pp*, pPb collisions @5TeV
 - * Mean-p_T of charged particle versus multiplicity in pp, pPb collisions @5TeV.

Understand final state effects using exotic particle and vice versa

multiplicity in pPb collisions @5TeV is at 13 TeV

- * $D_{s0}^*(2317)$ + production analysis versus multiplicity in pp collisions at 13 TeV
- * With master students:
 - * Study low mass mesons with the dipion and and dimuon decay channel

- * The group increased considerably, with 6 more PhD students!
 - * Nuclear modification factor of identified charged particles *pp*, pPb collisions @5TeV
 - * Mean-p_T of charged particle versus multiplicity in pp, pPb collisions @5TeV.
 - * Strangeness enhancement versus multiplicity in pPb collisions @5TeV
 - * $J/\psi + \gamma$ production in pp collisions at 13 TeV

Obtaining a reference for PbPb measurement in run 3

versus multiplicity in pp collisions at 13 TeV

* Study low mass mesons with the dipion and dimuon decay channel

16

Conclusion

- * Santiago (+Barcelona+Alcalá) became one of the biggest heavy-ion group of LHCb!
- * Wide research field that will be extended to QGP physics with run 3 PbPb dataset.
- * Proximity with the important phenomenology theory group in Santiago.
- * Unique research program with the installation of SMOG2, only fixed target experiment of LHC.

The LHCb detector

Excellent tracking and PID performance in pp and pPb collisions

Nuclear modification factor of $\pi^{0/\pm}$ in pPb @8TeV

 $\pi^0 \rightarrow \gamma$ (converted) γ (calorimeter)

* Constrain nPDF down to x~10-6

- * Expected Cronin-like effects in backward and shadowing in forward region
- * Tension in the backward region suggesting additional effects, disagreement with CGC calculations in forward
- * Greater precision than models!

Prompt Domesons in pPb @8TeV

- Results compared with CGC and nPDFs
- * Overall good agreement, tension at high-p_T suggests an additional effect like energy loss
- Backward to forward ratio, including medium-induced fully coherent energy loss (FCEL) without nPDFs effects

Z boson in pPb @8TeV

- Backward $-4.0 < y_Z^* < -2.5$ $\sigma_{Z \to \mu^+ \mu^-, \ pPb}^{fid} = 13.4 \pm 1.0 \pm 0.5 \pm 0.3 \text{ nb}$ Forward $1.5 < y_Z^* < 4.0$ $\sigma_{Z \to \mu^+ \mu^-, \ pPb}^{fid} = 26.9 \pm 1.6 \pm 0.9 \pm 0.7 \text{ nb}$
- * Powerful probe to measure nPDF as the hard process is well described by perturbative QCD
- Results compared to POWHEGBOX predictions using CTEQ6.1, EPPS16 and nCTEQ15 nPDF sets
- * Both regions compatible with the prediction, uncertainty in the forward smaller than the predictions, good constrain on the nPDFs

Open charm production in pNe @68 GeV

- * Fixed target collisions, centre of mass rapidity [-2.29,0] high x-Bjorken
- * Cross-section measurements compared to models including or not intrinsic charm
- * Largest SMOG sample with $L = 21.7 \pm 1.4 \text{ nb}^{-1}$

Open charm production in pNe @68 GeV

- * Cross-section compared to many models, Vogt and MS model that includes 1% intrinsic charm describe better the data.
- * Asymmetry found, down to -15% at $y^* = -2.29$, compatible with Pythia8 simulation
- * Possible recombination with valence quarks can explain the D^0-D^0 asymmetry

Charmonium production in pNe @68 GeV

- * Complete the intrinsic charm measurement with J/ψ
- * Again the Vogt model with 1% intrinsic charm seems to better describe the data, but larger samples with the SMOG2 system are needed to draw definitive conclusions

LHCb upgrade run 3

Heavy ion program will profit from this upgrade!

New RICH optics and photodetectors

LHCb upgrade run 3

SMOG2: A dedicated fixed target system to run simultaneously with normal collisions

- * Higher density of the gas (100 times higher luminosity)
- * Better control of the gas density (better luminosity determination)
- * New gas H₂, D₂, O₂ in addition to all noble gases

SMOG2 system

LHCb upgrade run 3

Improved tracking system pushes further the limitation of the detector

- * Access to more central collisions
- * QGP study possible with run3 data!
- * Many new study possible (quarkonia suppression, low-mass mesons, flow...)
- * Expect higher reach in run 4 and no limitations for run 5
 - * Note there is no limitation for the SMOG2 system

Centrality determination

arXiv:2111.01607

Centrality determination using MCGlauber model

Centrality %	$N_{ m part} \pm \sigma$	$N_{ m coll} \pm \sigma$	$b\pm\sigma$
100 - 90	2.91 ± 0.54	1.83 ± 0.34	15.41 ± 2.96
90 - 80	7.03 ± 0.78	5.77 ± 0.64	14.56 ± 1.80
80 - 70	15.92 ± 0.64	16.44 ± 0.69	13.59 ± 0.52
70 - 60	31.26 ± 0.67	41.28 ± 0.93	12.61 ± 0.28
60 - 50	54.65 ± 1.13	92.59 ± 2.01	11.59 ± 0.24
50 - 40	87.54 ± 1.01	187.54 ± 2.43	10.47 ± 0.14
40 - 30	131.24 ± 1.15	345.53 ± 3.89	9.23 ± 0.08
30 - 20	188.02 ± 1.49	593.92 ± 6.62	7.80 ± 0.06
20 - 10	261.84 ± 1.83	972.50 ± 10.37	6.02 ± 0.04
10 - 0	357.16 ± 1.70	1570.26 ± 15.56	3.31 ± 0.01

