Heavy-ion physics with LHCb detector Samuel Belin on behalf of the LHCb-IFT-IGFAE group #### Extreme states of nuclear matter At high temperature and/or density, Quark Gluon Plasma formation. Objectif of « heavy-ion physics »: Understand QCD and study the Quark Gluon Plasma (QGP) # Produce the QGP in the laboratory Large Hadron Collider τ~1 fm/c formation $\tau \sim 10^{15} \text{ fm/c}$ ### Detect QGP? $$R^{AA} = \frac{\sigma_{Jpsi}^{PbPb}}{T_{AA}\sigma_{J/\psi}^{pp}}$$ - * A classic method is to compare the production of a certain particle (J/ψ for example) in PbPb and scaled pp collisions. - * If $R^{AA} = 1$, no effect. PbPb is a superposition of independent pp collisions - * If $R^{AA} \neq 1$, additional effects - * This effects can come from the hot medium (plasma) of the cold medium (confined medium) ### Complexity of a hadronic collision Effects taken into account by the collision generator **PYTHIA** - Important to study QCD in confined and unconfined medium (QGP) - * proton-proton and proton-Plomb collisions -> confined QCD - ♦ Plomb-Plomb collisions → QGP LHCb is the ideal detector for confined QCD #### The LHCb detector Single arm spectrometer fully instrumented in pseudorapidity range $2 < \eta < 5$ ### The ultimate nPDF explorer Excellent possibilities for nuclear physics with pPb and fixed target system Different energy of the Pb and p beams: boost of nucleon-nucleon cms system $y=y_{lab}\pm0.465$ Series of Nuclear modification factor measurement to gives input to nPDFs fits Probes: charged particles, π^{\pm} , K^{\pm} , p, D^0 , D^{\pm} etc... $$R_{pPb}^{Probe} = \frac{N_{pPb}^{Probe}}{A_{Pb}N_{pp}^{Probe}}$$ ### The ultimate nPDF explorer #### Impact of the our results at 5TeV *LINK* #### Nuclear modification factor of charged particle in pp, pPb @5TeV $$\frac{d^2\sigma^{ch}(\eta, p_T)}{dp_T d\eta} = \frac{1}{L} \frac{N^{ch}(\eta, p_T)}{\Delta p_T \Delta \eta}$$ $$R_{pPb}(\eta, p_T) = \frac{1}{A} \frac{d^2 \sigma_{pPb}^{ch}(\eta, p_T) / dp_T d\eta}{d^2 \sigma_{pp}^{ch}(\eta, p_T) / dp_T d\eta}$$ - * Constrain nPDF down to x~10-6 - * Expected Cronin-like effects in backward and shadowing in forward region - * Tension in the backward region suggesting additional effects, disagreement with CGC calculations in forward - * Greater precision than models! #### Nuclear modification factor of charged particle in pp, pPb @5TeV $$Q_{exp}^2 = m^2 + p_T^2$$ $$x_{exp} = \frac{Q_{exp}}{\sqrt{s_{NN}}} e^{-r}$$ - * The group increased considerably, with 6 more PhD students! - * Nuclear modification factor of identified charged particles *pp*, pPb collisions @5TeV - * Mean-p_T of charged particle versus multiplicity in pp, pPb collisions @5TeV. - * Strangeness enhancement versus multiplicity in *p*Pb collisions @5TeV - * $J/\psi + \gamma$ production in pp collisions at 13 TeV - * $D_{s0}^*(2317)$ + production analysis versus multiplicity in pp collisions at 13 TeV With master students: - * Study low mass mesons with the dipion and and dimuon decay channel - * The group increased considerably, with 6 more PhD students! - * Nuclear modification factor of identified charged particles *pp*, pPb collisions @5TeV - * Mean-p_T of charged particle versus multiplicity in pp, pPb collisions @5TeV. - * Strangeness enhancement versus multiplicity in pPb collisions @5TeV - * $J/\psi + \gamma$ production in pp collisions at 13 TeV - * $D_{s0}^*(2317)$ + production analysis versus multiplicity in pp collisions at 13 TeV - * With master students: - * Study low mass mesons with the dipion and and dimuon decay channel - * The group increased considerably, with 6 more PhD students! - * Nuclear modification factor of identified charged particles *pp*, pPb collisions @5TeV - * Mean-p_T of charged particle versus multiplicity in pp, pPb collisions @5TeV. - * Strangeness enhancement versus multiplicity in *p*Pb collisions @5TeV - * $J/\psi + \gamma$ production in pp collisions at 13 TeV QGP in small system? - * $D_{s0}^*(2317)$ + production analysis versus multiplicity in pp collisions at 13 TeV - * With master students: - * Study low mass mesons with the dipion and and dimuon decay channel - * The group increased considerably, with 6 more PhD students! - * Nuclear modification factor of identified charged particles *pp*, pPb collisions @5TeV - * Mean-p_T of charged particle versus multiplicity in pp, pPb collisions @5TeV. - * Strangeness enhancement versus multiplicity i - * $J/\psi + \gamma$ production in pp collisions at 13 TeV Probing the proton PDF and better understand quarkonium hadronisation - * $D_{s0}^*(2317)$ + production analysis versus multiplicity in pp comsions at 15 TeV - * With master students: - * Study low mass mesons with the dipion and and dimuon decay channel - * The group increased considerably, with 6 more PhD students! - * Nuclear modification factor of identified charged particles *pp*, pPb collisions @5TeV - * Mean-p_T of charged particle versus multiplicity in pp, pPb collisions @5TeV. Understand final state effects using exotic particle and vice versa multiplicity in pPb collisions @5TeV is at 13 TeV - * $D_{s0}^*(2317)$ + production analysis versus multiplicity in pp collisions at 13 TeV - * With master students: - * Study low mass mesons with the dipion and and dimuon decay channel - * The group increased considerably, with 6 more PhD students! - * Nuclear modification factor of identified charged particles *pp*, pPb collisions @5TeV - * Mean-p_T of charged particle versus multiplicity in pp, pPb collisions @5TeV. - * Strangeness enhancement versus multiplicity in pPb collisions @5TeV - * $J/\psi + \gamma$ production in pp collisions at 13 TeV Obtaining a reference for PbPb measurement in run 3 versus multiplicity in pp collisions at 13 TeV * Study low mass mesons with the dipion and dimuon decay channel 16 #### Conclusion - * Santiago (+Barcelona+Alcalá) became one of the biggest heavy-ion group of LHCb! - * Wide research field that will be extended to QGP physics with run 3 PbPb dataset. - * Proximity with the important phenomenology theory group in Santiago. - * Unique research program with the installation of SMOG2, only fixed target experiment of LHC. #### The LHCb detector Excellent tracking and PID performance in pp and pPb collisions #### Nuclear modification factor of $\pi^{0/\pm}$ in pPb @8TeV $\pi^0 \rightarrow \gamma$ (converted) γ (calorimeter) * Constrain nPDF down to x~10-6 - * Expected Cronin-like effects in backward and shadowing in forward region - * Tension in the backward region suggesting additional effects, disagreement with CGC calculations in forward - * Greater precision than models! # Prompt Domesons in pPb @8TeV - Results compared with CGC and nPDFs - * Overall good agreement, tension at high-p_T suggests an additional effect like energy loss - Backward to forward ratio, including medium-induced fully coherent energy loss (FCEL) without nPDFs effects ### Z boson in pPb @8TeV - Backward $-4.0 < y_Z^* < -2.5$ $\sigma_{Z \to \mu^+ \mu^-, \ pPb}^{fid} = 13.4 \pm 1.0 \pm 0.5 \pm 0.3 \text{ nb}$ Forward $1.5 < y_Z^* < 4.0$ $\sigma_{Z \to \mu^+ \mu^-, \ pPb}^{fid} = 26.9 \pm 1.6 \pm 0.9 \pm 0.7 \text{ nb}$ - * Powerful probe to measure nPDF as the hard process is well described by perturbative QCD - Results compared to POWHEGBOX predictions using CTEQ6.1, EPPS16 and nCTEQ15 nPDF sets - * Both regions compatible with the prediction, uncertainty in the forward smaller than the predictions, good constrain on the nPDFs ### Open charm production in pNe @68 GeV - * Fixed target collisions, centre of mass rapidity [-2.29,0] high x-Bjorken - * Cross-section measurements compared to models including or not intrinsic charm - * Largest SMOG sample with $L = 21.7 \pm 1.4 \text{ nb}^{-1}$ ### Open charm production in pNe @68 GeV - * Cross-section compared to many models, Vogt and MS model that includes 1% intrinsic charm describe better the data. - * Asymmetry found, down to -15% at $y^* = -2.29$, compatible with Pythia8 simulation - * Possible recombination with valence quarks can explain the D^0-D^0 asymmetry ### Charmonium production in pNe @68 GeV - * Complete the intrinsic charm measurement with J/ψ - * Again the Vogt model with 1% intrinsic charm seems to better describe the data, but larger samples with the SMOG2 system are needed to draw definitive conclusions ## LHCb upgrade run 3 Heavy ion program will profit from this upgrade! New RICH optics and photodetectors ## LHCb upgrade run 3 SMOG2: A dedicated fixed target system to run simultaneously with normal collisions - * Higher density of the gas (100 times higher luminosity) - * Better control of the gas density (better luminosity determination) - * New gas H₂, D₂, O₂ in addition to all noble gases SMOG2 system ## LHCb upgrade run 3 Improved tracking system pushes further the limitation of the detector - * Access to more central collisions - * QGP study possible with run3 data! - * Many new study possible (quarkonia suppression, low-mass mesons, flow...) - * Expect higher reach in run 4 and no limitations for run 5 - * Note there is no limitation for the SMOG2 system ## Centrality determination arXiv:2111.01607 Centrality determination using MCGlauber model | Centrality % | $N_{ m part} \pm \sigma$ | $N_{ m coll} \pm \sigma$ | $b\pm\sigma$ | |--------------|--------------------------|--------------------------|------------------| | 100 - 90 | 2.91 ± 0.54 | 1.83 ± 0.34 | 15.41 ± 2.96 | | 90 - 80 | 7.03 ± 0.78 | 5.77 ± 0.64 | 14.56 ± 1.80 | | 80 - 70 | 15.92 ± 0.64 | 16.44 ± 0.69 | 13.59 ± 0.52 | | 70 - 60 | 31.26 ± 0.67 | 41.28 ± 0.93 | 12.61 ± 0.28 | | 60 - 50 | 54.65 ± 1.13 | 92.59 ± 2.01 | 11.59 ± 0.24 | | 50 - 40 | 87.54 ± 1.01 | 187.54 ± 2.43 | 10.47 ± 0.14 | | 40 - 30 | 131.24 ± 1.15 | 345.53 ± 3.89 | 9.23 ± 0.08 | | 30 - 20 | 188.02 ± 1.49 | 593.92 ± 6.62 | 7.80 ± 0.06 | | 20 - 10 | 261.84 ± 1.83 | 972.50 ± 10.37 | 6.02 ± 0.04 | | 10 - 0 | 357.16 ± 1.70 | 1570.26 ± 15.56 | 3.31 ± 0.01 |