

LEPTON FLAVOUR UNIVERSALITY TESTS WITH SEMILEPTONIC

 $b \to c\ell\nu_{\ell}$ DECAYS

Alessandra Gioventù

7th Red LHC workshop - 12/05/2023
alessandra.gioventu@cern.ch
IGFAE-USC ICCUB-UB

UNIVERSITAT DE BARCELONA

Lepton Flavour Universality

- The SM predicts equal couplings between gauge bosons and the three lepton families. This is called Lepton Flavour Universality (LFU)
 - Observation of LFU violation \longrightarrow sign of new physics (NP)
- Semileptonic decays show tensions between SM expectation and experimental results in $b \to c\ell\nu_\ell$ and $b \to s\ell\ell$ (Ricci's talk) transitions
- LFU can be probed by studying different observables:
 - Differential branching fractions
 - Angular analyses
 - Ratio observables

- Very well predicted
- Cancellation of theoretical and experimental uncertainties in the ratio

$$R_{D^*}(q^2) = \frac{d\Gamma(B \to D^{*-}\tau^+\nu_{\tau})}{dq^2} / \frac{d\Gamma(B \to D^{*-}\ell^+\nu_{\ell})}{dq^2}$$

$$q^2 = (p_B - p_{D^*})^2$$

Semileptonic $b \to c \ell \nu_\ell$ decays

- Test LFU by measuring $R(H_c) = \frac{BR(H_b \to H_c \tau^+ \nu_{\tau})}{BR(H_b \to H_c \mu^+ \nu_{\mu})}$
- where $H_b = B^0$, $B_{(c)}^+$, Λ_b^0 , B_s^0 , ... and $H_c = D^{(*)\pm}$, D^0 , D_s , Λ_c^+ , J/ψ , ..

- Clean theoretical prediction
- $R(H_c)$ deviates from unity due to different lepton masses
- Missing momentum of neutrinos
- Different strategies:
 - Muonic decay of the tau: $\tau^+ \to \mu^+ \nu_\mu \bar{\nu}_\tau$
 - 3-prong decays: $\tau^+ \to \pi^+ \pi^- \pi^+ (\pi^0) \bar{\nu}_\tau$
- Combined R(D) and $R(D^*)$ measurement in tensions with SM predictions by 3.2σ

Muonic R(D)- $R(D^*)$ measurement

Measurement of $R(D^{(*)})=\frac{BR(B^0\to D^{(*)}\tau^+\nu_{\tau})}{BR(B^0\to D^{(*)}\mu^+\nu_{\mu})}$ with $\tau^+\to \mu^+\nu_{\mu}\bar{\nu}_{\tau}$

- Same final states for signal and normalisation
- ▶ B^0 boost along z axis \gg boost of decay products in B^0 rest frame
- Momentum approximated as $(p_z)_B = \frac{m_B}{m_{D^*\mu}}(p_z)_{D^*\mu}$

Muonic R(D)- $R(D^*)$ measurement

• Separation of τ and μ channels via a 3D binned template fit to data:

$$- q^2 = (p_B - p_{D^*})^2$$

$$- m_{\text{miss}}^2 = (p_B - p_{D^*} - p_{\mu})^2$$

- μ energy in the B rest frame, E_{μ}^{*}

$$\rho = -0.43$$
 correlation

5

Run 1, 3 fb⁻¹:[<u>PRP 97 072013 (2018),</u> PRL 120 171802 (2018)]

15+16, 2 fb⁻¹: [arxiv:2305.01463]

- au reconstructed with 3-prong au decays $au^+ o \pi^+\pi^-\pi^+(\pi^0)\bar{\nu}_{ au}$
- Measure $BR(B^0 \to D^{*-}\tau^+\nu_{\tau})$ w.r.t. the normalisation mode $B^0 \to D^{*-}\pi^+\pi^-\pi^+$:

$$\rightarrow K(D^*) = \boxed{ \frac{N_{sig}}{N_{norm}} \cdot \frac{\varepsilon_{norm}}{\varepsilon_{sig}} \cdot \frac{1}{BR(\tau^+ \rightarrow \pi^+\pi^-\pi^+(\pi^0)\bar{\nu}_{\tau})} }$$

$$\Rightarrow R(D^*) = K(D^*) \cdot \frac{BR(B^0 \to D^{*-}\pi^+\pi^-\pi^+)}{BR(B^0 \to D^{*-}\mu^+\nu_{\mu})}$$

External inputs

$$\begin{split} BR(B^0 \to D^{*-}\pi^+\pi^-\pi^+) &= (7.21 \pm 0.29) \cdot 10^{-3} \\ BR(B^0 \to D^{*-}\mu^+\nu_\mu) &= (5.05 \pm 0.14) \,\% \\ BR(\tau^+ \to \pi^+\pi^-\pi^+\nu_\tau) &= (9.02 \pm 0.05) \,\% \\ BR(\tau^+ \to \pi^+\pi^-\pi^+\nu_\tau) &= (4.49 \pm 0.05) \,\% \end{split}$$

- Approximations to estimate B and \(\tau \) momenta
- Largest background channels:
 - **Prompt** $B^0 \to D^{*-}\pi^+\pi^-\pi^+(X)$ background suppressed by $\Delta z > 4\sigma_{\Delta z}$
 - Doubly charmed $B \to D^{*-}D_s^+(\to 3\pi)(X)$, treated with multivariate analysis (BDT)

Hadronic $R(D^*)$ measurement

- Normalisation yield \rightarrow invariant mass fit to $m(D^{*-}3\pi)$
- ▶ Signal yield \rightarrow 3D template fit in τ decay time, q^2 and BDT

$$R(D^*) = 0.247 \pm 0.015 \text{ (stat)} \pm 0.015 \text{ (syst)} \pm 0.012 \text{ (ext)}$$

Agreement with $R(D^*)_{SM} = 0.254 \pm 0.005$

Including Run 1 result:

$$R(D^*)_{(2011-2016)} = 0.257 \pm 0.012 \pm 0.014 \pm 0.012$$

$R(J/\psi)$ and $R(\Lambda_c^+)$ measurements

$$R(J/\psi) = \frac{BR(B_c^+ \to J/\psi \tau^+ \nu_\tau)}{BR(B_c^+ \to J/\psi \mu^+ \nu_\mu)} \text{ with } \tau^+ \to \mu^+ \nu_\mu \bar{\nu}_\tau \text{ decays}$$

Run 1 3 fb^{-1}

$$R(\Lambda_c^+) = \frac{BR(\Lambda_b^0 \to \Lambda_c^+ \tau^- \bar{\nu}_{\tau})}{BR(\Lambda_b^0 \to \Lambda_c^+ \mu^- \bar{\nu}_{\mu})} \text{ with 3-prong } \tau \text{ decays}$$

 $R(\Lambda_c^+) = 0.242 \pm 0.026 \text{ (stat)} \pm 0.040 \text{ (syst)} \pm 0.0597 \text{ (ext)}$

[HFLAV]

[PRD 73 054024 (2006)]

[PRD99 (2019) 055008]

8

Prospects and conclusions

- Perform LFU tests to probe the SM
- In the last months new results from LHCb
 - R(D)- $R(D^*)$ combination with $\tau^- \to \mu^- \bar{\nu}_\mu \nu_\tau$
 - $R(D^{*-})$ measurement with **3-prong** au decays
- Several measurements ongoing with larger data samples
 - Reduce data-driven systematics and statistical uncertainties
 - Angular analyses
- New results from LHCb and Belle II
 - new answers on LFU problem

BACKUP

The LHCb detector

Run 1: 2010-2012 $\sqrt{s} = 7$, 8 TeV $\mathcal{L}_{int} = 3 \text{ fb}^{-1}$

Run 2: 2015-2018

 $\sqrt{s} = 13 \text{ TeV } \mathcal{L}_{int} = 6 \text{ fb}^{-1}$

- Large amount of b and c hadrons produced, $\sigma_b = (144 \pm 1 \pm 21) \,\mu b$ at 13 TeV
- Forward spectrometer for b- and c-hadron decays (2 < η < 5)
 - Good vertex and impact parameter resolution ($\sigma(IP) \sim 20 \ \mu m$)
 - Excellent momentum resolution ($\delta p/p = [0.5 1] \% p < 200 \text{ GeV}$)
 - Excellent charged particle identification (μ ID 97% for ($\mu \rightarrow \pi$) misID of 1-3%)
 - Capability for neutral identification

R(D) and $R(D^*)$ status

$R(D) - R(D^*)$ COMBINATION WITH MUONIC τ

Systematic uncertainties

Internal fit uncertainties	$\sigma_{\mathcal{R}(D^*)}(imes 10^{-2})$	$\sigma_{\mathcal{R}(D^0)}(imes 10^{-2})$	Correlation
Statistical uncertainty	1.8	6.0	-0.49
Simulated sample size	1.5	4.5	
$B \to D^{(*)}DX$ template shape	0.8	3.2	
$\overline{B} \to D^{(*)} \ell^- \overline{\nu}_{\ell}$ form-factors	0.7	2.1	
$\overline{B} \to D^{**} \mu^- \overline{\nu}_{\mu}$ form-factors	0.8	1.2	
$\mathcal{B} \ (\ \overline{B} \to D^* D_s^- (\to \tau^- \overline{\nu}_\tau) X \)$	0.3	1.2	
MisID template	0.1	0.8	
$\mathcal{B} \ (\ \overline{B} \to D^{**} \tau^- \overline{\nu}_{\tau} \)$	0.5	0.5	
Combinatorial	< 0.1	0.1	
Resolution	< 0.1	0.1	
Additional model uncertainty	$\sigma_{\mathcal{R}(D^*)}(imes 10^{-2})$	$\sigma_{\mathcal{R}(D^0)}(imes 10^{-2})$	
$B \to D^{(*)}DX$ model uncertainty	0.6	0.7	
$\overline{B}_s^0 \to D_s^{**} \mu^- \overline{\nu}_{\mu}$ model uncertainty	0.6	2.4	
Data/simulation corrections	0.4	0.8	
Coulomb correction to $\mathcal{R}(D^{*+})/\mathcal{R}(D^{*0})$	0.2	0.3	
MisID template unfolding	0.7	1.2	
Baryonic backgrounds	0.7	1.2	
Normalization uncertainties	$\sigma_{\mathcal{R}(D^*)}(imes 10^{-2})$	$\sigma_{\mathcal{R}(D^0)}(imes 10^{-2})$	
Data/simulation corrections	$0.4 \times \mathcal{R}(D^*)$	$0.6 \times \mathcal{R}(D^0)$	
$\tau^- \to \mu^- \nu \overline{\nu}$ branching fraction	$0.2 \times \mathcal{R}(D^*)$	$0.2{ imes}\mathcal{R}(D^0)$	
Total systematic uncertainty	2.4	6.6	-0.39
Total uncertainty	3.0	8.9	-0.43

HADRONIC $R(D^*)$ MEASUREMENT

$R(D^{*-})_{had}: B \to D^*D_sX$ background

- Double charm decays are one of the most important source of background
- ▶ Select $D^{*-}D_s^+$ sample with exclusive $D_s^+ \to 3\pi$

- Perform a mass fit to $D^{*-}D_s^+$ distribution
- Obtain relative yields to correct MC and constrain the respective parameters in the signal fit

Parameter	Fit result	$\left(\frac{\epsilon_{ m sig}}{\epsilon_{ m control}}\right)$	Corrected fraction
$f_{D_s^+}$	0.55 ± 0.03	0.992	0.55 ± 0.03
$f_{D_{s0}^{st+}}$	0.10 ± 0.04	1.077	0.11 ± 0.04
$f_{D_{s1}^+}^{^+}}$	0.37 ± 0.07	1.051	0.39 ± 0.07
$f_{\overline{D}^{**}D_s^+(X)}$	0.28 ± 0.10	1.208	0.34 ± 0.12
$f_{B_s^0 \to D^{*-}D_s^+(X)}$	0.12 ± 0.04	0.904	0.11 ± 0.04

$R(D^{*-})_{had}$: Inclusive $D_s^+ \to 3\pi(X)$ decays

- > Strategy similar to Run 1 analysis ightarrow systematic $\sigma_{D_s^+} \sim 0.4\,\%$
- Data sample enriched in D_s^+ by requiring BDT below a threshold
- Simultaneous fit to data $min(m(\pi^+\pi^-))$, $max(m(\pi^+\pi^-))$, $m(\pi^+\pi^+)$ and $m(3\pi)$
- $D_s^+ \to 3\pi(X)$ mode fractions as fit parameters
- Contribution tosystematics of 1.0 %

$R(D^{*-})_{\text{had}}$: fit results

Parameter	Fit result	Constraint
	Free	
$N_{ m sig}$	2469 ± 154	
$N_{D_s^+}$	20446 ± 509	
f_{D^+}	0.08 ± 0.01	
$-f_{D^0}^{v_1v_2}$	2.10 ± 0.30	
	Constrained	
$N_{B o D^{*-}3\pi X}$	2279 ± 177	2051 ± 200
$f_{B_s^0 \to D^{*-}D_s^+(X)}$	0.13 ± 0.03	0.11 ± 0.04
$f_{D_{s1}^+}$	0.36 ± 0.03	0.40 ± 0.07
$f_{D_s^+}$	0.60 ± 0.02	0.55 ± 0.03
$f_{D_{s0}^{*+}}$	0.06 ± 0.03	0.11 ± 0.04
$f_{\overline{D}^{**}D_s^+(X)}$	0.61 ± 0.06	0.34 ± 0.12
	Fixed	
$\overline{N_{B_1B_2}}$	46	
$N_{D^0}^{\mathrm{same}}$	1051	
$N_{ m fake}^{ar{D}_0}$	468	
$N_{ m fake~\it D^{*-}}$	714	
$f_{\overline{D}^{**} au^+ u}$	0.035	
$f_{\tau^+ \to 3\pi \overline{\nu}_{\tau}}$	0.780	