Long-lived Particles, ProtoDUNE, and the SPS

Pilar Coloma

Based on arXiv:2304.06765 In collaboration with Jacobo López-Pavón, Laura Molina-Bueno and Salvador Urrea

Setup

Setup

North area EHN1 Neutrino Platform

Main features:

- no decay volume
- very high proton energy!

Meson yields (per PoT):

π^0	η	η'	D	D_s	au
4.03	0.46	0.05	$4.8 \cdot 10^{-4}$	$1.4\cdot10^{-4}$	$7.4\cdot10^{-6}$
ρ	ω	ϕ	J/ψ	B	Υ
0.54	0.53	0.019	$4.4\cdot10^{-5}$	$1.2\cdot 10^{-7}$	$2.3\cdot 10^{-8}$

ProtoDUNE

Two modules available (we only consider NPO2 here):

- Large fiducial volume, ~250 m³ → ideal for LLP searches
- Filled with LAr! → ideal for the detection of weakly-interacting particles

Key advantages:

- Excellent reconstruction and particle ID
- Very low detection thresholds

Main disadvantage:

• They are on surface (tons of cosmics!)

Expected number of decays

$$N_{ev} = N_M BR(M \to \Psi) BR(\Psi \to Vis) \epsilon_{eff} \int dS \int dE_{\Psi} \mathcal{P}(c\tau_{\Psi}/m_{\Psi}, E_{\Psi}, \Omega_{\Psi}) \frac{dn^{M \to \Psi}}{dE_{\Psi} dS}$$

Number of particles produced

Is the final state observable?

Decay probability within detector

Dependence with energy and angle

Expected number of decays

$$N_{ev} = N_M \text{BR}(M \to \Psi) \text{BR}(\Psi \to \text{Vis}) \epsilon_{eff} \int dS \int dE_{\Psi} \, \mathcal{P}(c\tau_{\Psi}/m_{\Psi}, E_{\Psi}, \Omega_{\Psi}) \, \frac{dn^{M \to \Psi}}{dE_{\Psi} dS}$$

Model-dependent

Model-dependent

Model-independent sensitivity

$$N_{ev} = N_M BR(M \to \Psi) BR(\Psi \to Vis) \epsilon_{eff} \int dS \int dE_{\Psi} \mathcal{P}(c\tau_{\Psi}/m_{\Psi}, E_{\Psi}, \Omega_{\Psi}) \frac{dn^{M \to \Psi}}{dE_{\Psi} dS}$$

- → No correlation assumed between production and decay
- → We assume backgrounds can be efficiently suppressed

Luminosity:

- \rightarrow 3.5e18 PoT/yr
- \rightarrow 5 years of data taking

Pilar Coloma - IFT

Benchmark scenario: HNL

$$\nu_{\alpha} = \sum_{i} U_{\alpha i} \nu_{i} + U_{\alpha 4} N$$

(See yesterday's talks by Martin Hirsch and Xabier Marcano)

Benchmark scenario: HNL

$$\nu_{\alpha} = \sum_{i} U_{\alpha i} \nu_{i} + U_{\alpha 4} N$$

The best bounds for HNL between O(100) MeV - GeV scale come from fixed targets

Benchmark scenario: HNL

$$\nu_{\alpha} = \sum_{i} U_{\alpha i} \nu_{i} + U_{\alpha 4} N$$

The best bounds for HNL between O(100) MeV - GeV scale come from fixed targets

However:

- → Bounds for HNL at the GeV scale significantly weaker than at lower masses
- \rightarrow U_{T4} is particularly hard to probe

Sensitivities to HNL decays

Decays considered: $N \rightarrow \nu ee, \nu \mu \mu, \nu e \mu, e \pi, \mu \pi, \nu \pi^0$

Bonus: sensitivity to scattering

ProtoDUNE can also search for new particles that interact with nuclei or electrons in the detector: either long-lived or stable particles (e.g. millicharged)

$$\frac{d\sigma}{dT} = \pi \alpha^2 \varepsilon^2 \frac{2E_{\chi}^2 m_e + T^2 m_e - T \left(m_{\chi}^2 + m_e \left(2E_{\chi} + m_e \right) \right)}{T^2 \left(E_{\chi}^2 - m_{\chi}^2 \right) m_e^2} \quad 10^{-1}$$

In the limit $E_{\chi} \gg m_{\chi}, m_e$

$$\sigma \sim \varepsilon^2 \left(\frac{30 \text{ MeV}}{T_{\text{min}}} \right) 10^{-26} \text{ cm}^{-2}$$

$$N_{ev} = \epsilon_{det} N_{trg} \langle \sigma \rangle \Phi^{\chi} N_{PoT}$$

Pilar Coloma - IFT

Summary

- Thanks to its location, the protoDUNE modules may be exposed to a beam of new particles produced from the SPS
- Their large volume, and high mass provide sensitivity to both:
 - Decays (long-lived particles)
 - Scattering (long-lived particles, but also stable particles)
- This setup has the potential to improve over current constraints:
 - With facilities already in place
 - Without interfering with experiments in the CERN North Area
 - Within a very short-timescale
 - → A more detailed assessment of backgrounds and efficiencies is required (work in progress)

Thanks!

Work supported by Grants RYC2018-024240-I, PID2019-108892RB-IOO, CEX2020-001007-S

Backup

HNL fluxes

$$\nu_{\alpha} = \sum_{i} U_{\alpha i} \nu_{i} + U_{\alpha 4} N$$

Coloma, Fernandez-Martinez, Gonzalez-Lopez, Hernandez-Garcia, Pavlovic, 2007.03701

Bonus: sensitivity to scattering

ProtoDUNE can also search for new particles that interact with nuclei or electrons in the detector: either long-lived or stable particles (e.g. millicharged)

Pilar Coloma - IFT