
Daniel Murnane, Connecting the Dots, Oct 10th 2023

TRACK FINDING-AND-FITTING
WITH INFLUENCER OBJECT
CONDENSATION

CONNECTING THE DOTS
TOULOUSE, FRANCE, OCT 10TH 2023

DANIEL MURNANE

ON BEHALF OF THE EXATRKX PROJECT

1

Daniel Murnane, Connecting the Dots, Oct 10th 2023

TRACK FINDING-AND-FITTING
WITH INFLUENCER OBJECT
CONDENSATION

CONNECTING THE DOTS
TOULOUSE, FRANCE, OCT 10TH 2023

DANIEL MURNANE

ON BEHALF OF THE EXATRKX PROJECT

2

Daniel Murnane, Connecting the Dots, Oct 10th 2023

THE TRACKING PROBLEM

 Protons collide in center of detector, “shattering” into thousands of particles

 The charged particles travel in curved tracks through detector’s magnetic field (Lorentz

force)

 A track is defined by the hits left as energy deposits in the detector material, when the

particle interacts with material

 In this study, we use the TrackML Dataset [link], with variable-sized subsets of tracks

selected

 The goal of track reconstruction: Given set of hits from particles in a detector, assign

label(s) to each hit.

3

Can reframe the problem of assigning label → hits

1. Assume the existence of some uniquely labelled “representative point” in each

track object

2. Then our task is to assign hits → representative point

1

1

1

1

2
3

4

5

6,7

8

9

2 3

3

3

4

4

4

5
5

5 6

7

6

7
6

7

888

999

1
2

3

4

5

6

8

9

7

Labels on hits

Hits to labels

https://www.kaggle.com/c/trackml-particle-identification

Daniel Murnane, Connecting the Dots, Oct 10th 2023

TRACKING AS OBJECT DETECTION

 A well-studied problem in computer vision: Given an image, can we identify all
discrete objects of interest and predict information about them?

 Popular approach is to draw a bounding box as the representative label

 Can’t directly use this approach for tracking: tracks are not localized in 3D space

4

The “You Only Look Once”

(YOLO) approach to

detection: draw a bounding

box and predict the object

in a single step.
Redmond et al, arXiv: 1506.02640

?

Daniel Murnane, Connecting the Dots, Oct 10th 2023

WHAT IS OUR CURRENT ML TRACKING APPROACH?

 The GNN4ITk project has a proof-of-concept running on HL-LHC full pileup simulation

 Has the following structure:

5

Metric
Learning

Module
Map

or

Graph Neural
Network

Connected
Components

Connected
Components

+ Walkthrough

or
𝑣0
𝑘+1 = 𝜙(𝑒0𝑗

𝑘 , 𝑣𝑗
𝑘 , 𝑣0

𝑘)

𝑣1
𝑘

𝑣2
𝑘

𝑣3
𝑘 𝑣4

𝑘

𝑒01
𝑘 𝑒02

𝑘

𝑒03
𝑘 𝑒04

𝑘

Graph
Construction

Edge
Classification

Graph
Segmentation

Hits Graph Edge Scores Track Candidates

Daniel Murnane, Connecting the Dots, Oct 10th 2023

WHAT IS OUR CURRENT ML TRACKING APPROACH?

6

Metric
Learning

Module
Map

or

Graph Neural
Network

Connected
Components

Connected
Components

+ Walkthrough

or
𝑣0
𝑘+1 = 𝜙(𝑒0𝑗

𝑘 , 𝑣𝑗
𝑘 , 𝑣0

𝑘)

𝑣1
𝑘

𝑣2
𝑘

𝑣3
𝑘 𝑣4

𝑘

𝑒01
𝑘 𝑒02

𝑘

𝑒03
𝑘 𝑒04

𝑘

Graph
Construction

Edge
Classification

Graph
Segmentation

Hits Graph Edge Scores Track Candidates

• This pipeline works very well, in terms of physics
performance

• But the graph construction (e.g. filtering) and track
building (e.g. labelling) together take 70% of the
time!

• Would like to skip the graph construction, and do
labelling with one step…

Daniel Murnane, Connecting the Dots, Oct 10th 2023

WHAT IS OUR CURRENT ML TRACKING APPROACH?

7

Metric
Learning

Module
Map

or

Graph Neural
Network

Connected
Components

Connected
Components

+ Walkthrough

or
𝑣0
𝑘+1 = 𝜙(𝑒0𝑗

𝑘 , 𝑣𝑗
𝑘 , 𝑣0

𝑘)

𝑣1
𝑘

𝑣2
𝑘

𝑣3
𝑘 𝑣4

𝑘

𝑒01
𝑘 𝑒02

𝑘

𝑒03
𝑘 𝑒04

𝑘

Graph
Construction

Edge
Classification

Graph
Segmentation

Hits Graph Edge Scores Track Candidates

Daniel Murnane, Connecting the Dots, Oct 10th 2023

WHAT IS OUR CURRENT ML TRACKING APPROACH?

8

Metric
Learning

Module
Map

or

Graph Neural
Network

Connected
Components

Connected
Components

+ Walkthrough

or
𝑣0
𝑘+1 = 𝜙(𝑒0𝑗

𝑘 , 𝑣𝑗
𝑘 , 𝑣0

𝑘)

𝑣1
𝑘

𝑣2
𝑘

𝑣3
𝑘 𝑣4

𝑘

𝑒01
𝑘 𝑒02

𝑘

𝑒03
𝑘 𝑒04

𝑘

Graph
Construction

Edge
Classification

Graph
Segmentation

Hits Graph Edge Scores Track Candidates

Influencer Network

Object
Condensation

Hits Track Candidates

Daniel Murnane, Connecting the Dots, Oct 10th 2023

OBJECT DETECTION AS METRIC LEARNING

 We consider a “naïve” solution to the object detection problem

 Using a transformer or graph neural network (GNN), embed each hit 𝑥𝑖 in a latent space 𝒰(xi)

 Use a hinge loss to encourage hits from the same particle (𝑦𝑖𝑗 = 1) to be close, hits from different particles (𝑦𝑖𝑗 =

0) to be distant:

𝐿 = ൝
Δij, 𝑤ℎ𝑒𝑛 𝑦𝑖𝑗 = 1

max 0, 1 − Δij , 𝑤ℎ𝑒𝑛 𝑦𝑖𝑗 = 0

To create representative points, we use a “greedy condensation” approach. For all points:

1. Randomly select a point

2. Find all neighbors (within radius R)

3. If none of the neighbors are already a representative, then convert the point to a representative, and attach all neighbors to that
representative

9

Let’s call this the naïve benchmark. Works quite well, but some points are clearly better candidates for

representative than others. Can we learn which points are good representative points?

Random

hit 1

Random

hit 2

Latent ℝ12 projected to ℝ2

Daniel Murnane, Connecting the Dots, Oct 10th 2023

OBJECT CONDENSATION: LEARNING REPRESENTATIVE POINTS

 Idea from particle flow reconstruction: Object condensation: one-stage grid-free

multi-object reconstruction in physics detectors, graph, and image data, Kiesler

2020 [link]

 Simultaneously learn an embedding similarity space and a condensation score

for each hit, where a higher score is a more “attractive” point charge in similarity

space

 All hits with learned condensation score 𝛽 above some threshold are considered

candidates for representation points, then we apply greedy condensation to the

representatives sorted by 𝛽

 Shortcomings:

 Having this “hard cut” charge threshold requires fine-tuning

 Inference requires sorting likely condensation points and sequentially considering each
condensation point based on all previous condensation points

 Training (as a simplification) only considers maximum-scoring condensation point in each
class, which neglects global optima

10

The potential function of members of the same class

relative to the representation point of that class

(Kiesler 2020)

https://arxiv.org/pdf/2002.03605.pdf
https://arxiv.org/pdf/2002.03605.pdf

Daniel Murnane, Connecting the Dots, Oct 10th 2023

COLLISION EVENT AS A SOCIAL NETWORK

 A social network has nodes that are more important than others –
representative nodes, or “Influencer” nodes

 In a directed graph, they have many incoming edges

 “User” nodes are represented by an Influencer, and have one
outgoing

 How to use metric learning to build a directed graph?

 Key idea: A member of a network can be both a User and
Influencer

 We can build a directed graph by learning for each member of the
point cloud two embeddings in the same space: a user-embedding
and an influencer-embedding

11

The goal…

12

𝑓1 , 𝑓2

For each red hit, find all neighboring blue hits.
That is a track.

Embed all hits with two, separate
functions.

Daniel Murnane, Connecting the Dots, Oct 10th 2023

THE STORY SO FAR…

1. We want to go from hits to tracks: a set of points 𝑥1, 𝑥2, … , 𝑥𝑛 to a set of sets of points {𝑇1, 𝑇2, … , 𝑇𝑁}

2. We need introduce track-like objects somewhere to represent these sets

3. We can do this as a post-processing (as in GNN4ITk or the naïve baseline),

4. We can also do this from within the set of hits itself to be differentiable (as in object condensation where we classify

hits as good track-like representatives)

5. Rather than choose which hits could be representatives, let all hits be track-like representatives, and those that have

hits that crowd around them are selected as good representatives

13

Daniel Murnane, Connecting the Dots, Oct 10th 2023

RECIPE: METRIC LEARNING FOR A DIRECTED GRAPH

1. We want one hit from each track to represent all hits in that track

2. Rather than learning some “representative score” for each hit, we simply want to learn an embedding where each hit

“points to” its representative

3. To create this pointing (a directed graph), we need two embeddings: one source space, one target space

4. All hits are embedded into both the source space and the target space

5. A directed graph is constructed by connecting nodes in the target space that are close to nodes in the target space

14

Source space

Target space

Daniel Murnane, Connecting the Dots, Oct 10th 2023

DESIRED LOSS FUNCTION BEHAVIOUR

 Given each of 𝑁 points 𝑥𝑖 in track 𝑇𝑎 embedded into ℝ𝑀 with two models: a user-embedding 𝒰 and an

influencer-embedding ℐ

 We want a minimum in the loss when all hits 𝑥𝑖 ∈ 𝑇𝑎 have 𝒰 𝑥𝑖 inside neighbourhood 𝒩 ℐ 𝑥𝑖 for at least one

influencer, and only one influencer

15

𝒰 𝑥𝑖 , ℐ(𝑥𝑖)

Position of user-embeddings

Position of influencer-embeddings

𝑇𝑎, 𝑁 = 5

𝒩 ℐ 𝑥𝑖

In this case, 4 out of 5 users

are in the neighbourhood

of an influencer

ℝ𝑀

16

 Given each of 𝑁 points 𝑥𝑖 in track 𝑇𝑎 embedded into ℝ𝑀 with two models: a user-embedding 𝒰 and an influencer-

embedding ℐ

 We want a minimum in the loss when all hits 𝑥𝑖 ∈ 𝑇𝑎 have 𝒰 𝑥𝑖 inside neighbourhood 𝒩 ℐ 𝑥𝑖 for at least one

influencer (and preferably only one influencer)

 We can achieve this by taking 𝐿𝑢(𝑇𝑎) =
𝑁
ς𝑗

1

𝑁
σ𝑖 Δ𝑖𝑗

2 , where Δ𝑖𝑗 = 𝒰 𝑥𝑖 − ℐ 𝑥𝑗

 Consider loss 𝐿 in simple example of two points in three different cases:

DESIRED LOSS FUNCTION BEHAVIOUR

Position of user-embeddings

Position of influencer-embeddings

𝐿 ∝ Δ00
2 + Δ01

2

× Δ10
2 + Δ11

2 = 4

Δ = 1Δ = 1

𝐿 ∝ Δ00
2 + Δ01

2

× Δ10
2 + Δ11

2 = 16

Δ = 2

𝐿 ∝ Δ00
2 + Δ01

2

× Δ10
2 + Δ11

2 = 0

Δ = 2

Case A Case B Case C

Note: Noise is given a class label 𝑁𝑎𝑁 and handled like all other data points

Daniel Murnane, Connecting the Dots, Oct 10th 2023

ATTRACTIVE INFLUENCER LOSS

 The attractive Influencer loss for track 𝑎 is 𝐿𝑎
+ =

𝑁
ς𝑗

1

𝑁
σ𝑖 Δ𝑖𝑗

2 , where Δ𝑖𝑗 = 𝒰 𝑥𝑖 − ℐ 𝑥𝑗

 It has a minimum when all user embeddings 𝒰 𝑥𝑖 are close to at least one influencer embedding ℐ 𝑥𝑗 , therefore it

attracts users to influencers of the same class

 The attractive Influencer loss is actually the geometric mean across influencers of the arithmetic mean across users of

the distance between each positive pair across all 𝑛 tracks, so we can rewrite it for numerical stability:

𝐿𝑎
+ = exp

1

𝑁
෍

𝑗

ln(
1

𝑁
෍

𝑖

Δ𝑖𝑗
2) , 𝐿+ =

1

𝑛
෍

𝑎

𝐿𝑎
+ , 𝑦𝑖𝑗 = 1

 Looks pretty damn ugly! It’s a triple for-loop. Luckily, we can parallelise this on GPU

17

Daniel Murnane, Connecting the Dots, Oct 10th 2023

REPULSIVE INFLUENCER LOSS

 Recall our desired loss function behaviour:

We want a minimum in the loss when all hits 𝑥𝑖 ∈ 𝑇𝑎 have 𝒰 𝑥𝑖 inside

neighbourhood 𝒩 ℐ 𝑥𝑖 for at least one influencer, and only one influencer

 The attractive loss gives all hits close to at least one influencer

 To constrain this neighbourhood to contain exactly one influencer, we must punish
influencers for being close to one another:

𝐿− = mean𝑖𝑗(max 0, 1 − Δ𝑖𝑗
ℐ)

 This is a simple repulsive hinge loss, which has a maximum at Δ𝑖𝑗
ℐ =0, and a minimum

at Δ𝑖𝑗
ℐ ≥ 1

 As it is linear, it turns out to not be strong enough to overcome the attractive
influencer loss, leading to high duplicate rates

18

Δ01
ℐ >1

Δ00 = Δ01 = 0

The total Influencer Loss is

at a minimum in this case

Paolo Calafiura, CHEP, May 9th 2023

REAL SPACE

19

A TRAINING MONTAGE

EMBEDDING SPACE

• We can see the Influencer Loss working on two tracks above, across training epochs

• In Real Space, we show only Users (circles) and Influencers (stars) when they are associated with an Influencer or User (respectively)

• The color in Real Space is a projection in 1D of the location in Embedding Space

• In Embedding Space, we should edges created, and connected Influencers are large stars, unconnected Influencers are small stars

Daniel Murnane, Connecting the Dots, Oct 10th 2023

INFLUENCER INFERENCE

To construct track candidates,

1. Embed hits with 𝒰 𝑥𝑖 , ℐ(𝑥𝑖) into ℝ𝑀

2. Perform fixed-radius nearest neighbour (FRNN) search, with 𝒰 𝑥𝑖 as database, ℐ(𝑥𝑖) as query

3. All non-empty Influencer neighbourhoods are track candidates of user hits 𝑥𝑖 | 𝒰 𝑥𝑖 ∈ 𝒩(ℐ 𝑥𝑖) , each represented

by an influencer hit. No further processing is required

20

𝒰 𝑥𝑖 , ℐ(𝑥𝑖)

Position of user-embeddings

Position of influencer-embeddings

𝒩 ℐ 𝑥𝑖

Track candidates:

(,)

(,)

Daniel Murnane, Connecting the Dots, Oct 10th 2023

PHYSICS PERFORMANCE

 Comparison of track reconstruction of naïve condensation and influencer condensation event size

 Influencer loss is able to condense tracks much more efficiently, and with far fewer fake track candidates

21

Daniel Murnane, Connecting the Dots, Oct 10th 2023

COMPUTATIONAL PERFORMANCE

22

 Influencer loss is currently an expensive calculation and a slow function to minimize, compared with the Naïve Hinge Loss

 Can be sped-up with a careful use of scatter-aggregations on the GPU

 However, this cost is only incurred during training and is amortized in inference

 The Naïve model’s greedy condensation creates tracks sequentially, while the Influencer condensation occurs in parallel and on a significantly

more sparse neighbourhood structure (c.f. the training montage to see this at work)

Daniel Murnane, Connecting the Dots, Oct 10th 2023

CONCLUSION

23

 Graph neural networks and transformers are a proven technique for tracking, given sufficient pre-and-post processing

 To perform tracking in a single step, we need to assign all hits in each track to a representative point

 We can do this with the Influencer Loss function

 Track finding inference with a fully trained Influencer network much faster than regular object condensation, and gives
similar or better physics performance

Next steps

 Since an Influencer point represents a whole track, we should be able to regress track-level features on it

 Understand why this is not working out of the box!

 Reduce the duplicate rate produced in the Influencer condensation approach, possibly with stronger repulsive loss
function

